13.已知實數(shù)x、y、z滿足x+y+z=0,x2+y2+z2=1,則x的最大值為$\frac{\sqrt{6}}{3}$.

分析 根據(jù)條件得到y(tǒng)+z=-x,y2+z2=1-x2,再根據(jù)柯西不等式(1•y+1•z)2≤(1+1)•(y2+z2),求出x的取值范圍,進(jìn)而得到最大值.

解答 解:因為,x、y、z滿足x+y+z=0,x2+y2+z2=1,
所以,y+z=-x,y2+z2=1-x2
根據(jù)二維形式的柯西不等式得,
(1•y+1•z)2≤(1+1)•(y2+z2),
即(-x)2≤2(1-x2),
整理得,3x2≤2,
解得x∈[-$\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$],
因此,x的最大值為$\frac{\sqrt{6}}{3}$,
故答案為:$\frac{\sqrt{6}}{3}$.

點評 本題主要考查了柯西不等式在求最值問題中的應(yīng)用,體現(xiàn)了構(gòu)造與整體的解題思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知動點P在圓x2+y2=4上運(yùn)動,過點P作x軸的垂線段,垂足為D,求線段PD的中點M的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)為奇函數(shù),當(dāng)x∈(0,+∞)時,f(x)=-2x+1,當(dāng)x∈R時,f(x)=$\left\{\begin{array}{l}{2}^{-x}-1,x≤0\\-{2}^{x}+1,x>0\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)p:A={x|2x2-3ax+a2<0},q:B={x|x2+3x-10≤0}.
(Ⅰ)求A;
(Ⅱ)當(dāng)a<0時,若¬p是¬q的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知f(x)=kx3+$\frac{2}{x}$-2(k∈R),f(lg5)=1,則f(lg$\frac{1}{5}$)=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在直三棱柱ABC-A1B1C1中,底面積為S,點D,E,F(xiàn)在側(cè)棱AA1,BB1,CC1上,且AD=h1,BE=h2,CF=h3,求幾何體ABC-DEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)$\frac{π}{4}$<α$<\frac{π}{2}$,角α的正弦線、余弦線和正切線的數(shù)量分別為a,b,c,由圖比較a,b,c的大小;如果$\frac{π}{2}$<α<$\frac{3π}{4}$,則a,b,c的大小關(guān)系又如何?(作圖并有比較的過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.計算-sin133°cos197°-cos47°cos73°的結(jié)果為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.分段函數(shù)f(x)=$\left\{\begin{array}{l}{2x+1\\;-2≤x≤0}\\{5x\\;0<x≤3}\end{array}\right.$,求
①函數(shù)的定義域,
②f(-1);
③f(1);
④f(0)

查看答案和解析>>

同步練習(xí)冊答案