【題目】已知函數(shù), .

1)若的圖象在點(diǎn)處的切線方程為,求在區(qū)間上的最大值和最小值;

2)若在區(qū)間上不是單調(diào)函數(shù),求的取值范圍.

【答案】1最大值為8,最小值為2

【解析】試題分析:(1)先根據(jù)切線方程為x+y﹣3=0利用導(dǎo)數(shù)的幾何意義求出a值,再研究閉區(qū)間上的最值問題,先求出函數(shù)的極值,比較極值和端點(diǎn)處的函數(shù)值的大小,最后確定出最大值與最小值;

(2)由題意得:函數(shù)f(x)在區(qū)間(﹣1,1)不單調(diào),所以函數(shù)f′(x)在(﹣1,1)上存在零點(diǎn).再利用函數(shù)的零點(diǎn)的存在性定理得:f′(﹣1)f′(1)0.由此不等式即可求得a的取值范圍.

試題解析:

(1)最大值為8,最小值為;(2) .

1上,∴

∵點(diǎn)的圖象上,∴,

,

,解得,

,

可知的極值點(diǎn).

, ,

在區(qū)間上的最大值為8,最小值為

2)因?yàn)楹瘮?shù)在區(qū)間上不是單調(diào)函數(shù),所以函數(shù)上存在零點(diǎn).

的兩根為,

, 都在上,則解集為空集,這種情況不存在;

若有一個(gè)根在區(qū)間上,則,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=ax-lnx,a∈R.

(1)當(dāng)a=1時(shí),求曲線f(x)在點(diǎn)(2,f(2))處的切線方程;

(2)是否存在實(shí)數(shù)a,使f(x)在區(qū)間(0,e]的最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知無窮數(shù)列{an},a1=1,a2=2,對(duì)任意n∈N* , 有an+2=an , 數(shù)列{bn}滿足bn+1﹣bn=an(n∈N*),若數(shù)列 中的任意一項(xiàng)都在該數(shù)列中重復(fù)出現(xiàn)無數(shù)次,則滿足要求的b1的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若f(x)=x2-x+b,且f(log2a)=b,log2f(a)=2(a>0且a≠1).

(1)求a,b的值;

(2)求f(log2x)的最小值及相應(yīng)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前項(xiàng)和為Sn , 若點(diǎn)An(n, )在函數(shù)f(x)=﹣x+c的圖像上運(yùn)動(dòng),其中c是與x無關(guān)的常數(shù)且a1=3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=tanan+1tanan , tan195+tan3=atan2,求數(shù)列{bn}的前99項(xiàng)和(用含a的式子表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P(2,-1)

(1)求過P點(diǎn)且與原點(diǎn)距離為2的直線l的方程;

(2)求過P點(diǎn)且與原點(diǎn)距離最大的直線l的方程最大距離是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方體的棱長(zhǎng)為1,線段上有兩個(gè)動(dòng)點(diǎn),則下列結(jié)論中正確結(jié)論的序號(hào)是__________

②直線與平面所成角的正弦值為定值;

③當(dāng)為定值,則三棱錐的體積為定值;

④異面直線所成的角的余弦值為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P在正方體ABCD﹣A1B1C1D1的表面上運(yùn)動(dòng),且P到直線BC與直線C1D1的距離相等,如果將正方體在平面內(nèi)展開,那么動(dòng)點(diǎn)P的軌跡在展開圖中的形狀是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20/千米時(shí),車流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).

1)當(dāng)0≤x≤200時(shí),求函數(shù)vx)的表達(dá)式;

2)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))fx=xvx)可以達(dá)到最大,并求出最大值.(精確到1/小時(shí)).

查看答案和解析>>

同步練習(xí)冊(cè)答案