A. | $\frac{\sqrt{2}}{2}$a | B. | $\frac{\sqrt{2}}{4}$a | C. | $\frac{\sqrt{2}}{3}$a | D. | $\frac{2\sqrt{2}}{3}$a |
分析 由已知得MN∥PQ.DP=DQ=$\frac{2a}{3}$,由此利用勾股定理能求出PQ.
解答 解:∵ABCD-A1B1C1D1是棱長為a的正方體,M、N分別是下底面的棱A1B1,B1C1的中點,
P是上底面的棱AD上的一點,AP=$\frac{a}{3}$,過PMN的平面交上底面于PQ,Q在CD上,
∴平面ABCD∥平面A1B1C1D1,
∴MN∥PQ.
∵M,N分別是A1B1,B1C1的中點,AP=$\frac{a}{3}$,
∴CQ=$\frac{a}{3}$,∴DP=DQ=$\frac{2a}{3}$,
∴PQ=$\sqrt{D{P}^{2}+D{Q}^{2}}$=$\sqrt{\frac{4{a}^{2}}{9}+\frac{4{a}^{2}}{9}}$=$\frac{2\sqrt{2}}{3}a$.
故選:D.
點評 本題考查線段和的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=x | B. | f(x)=x2 | C. | f(x)=$\frac{1}{x}$ | D. | f(x)=x2-2x+1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-4,1] | B. | [1,4] | C. | [-6,-4) | D. | [-6,4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-1)∪(3,+∞) | B. | (-1,3) | C. | (-∞,-1]∪[3,+∞) | D. | [-1,3] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com