【題目】在籃球比賽中,如果某位球員的得分,籃板,助攻,搶斷,蓋帽中有兩個值達到以上,就稱該球員拿到了兩雙.下表是某球員在最近五場比賽中的數(shù)據(jù)統(tǒng)計:

場次

得分

籃板

助攻

搶斷

蓋帽

)從上述比賽中任選場,求該球員拿到“兩雙”的概率.

)從上述比賽中任選場,設(shè)該球員拿到“兩雙”的次數(shù)為,求的分布列及數(shù)學期望

)假設(shè)各場比賽互相獨立,將該球員在上述比賽中獲得“兩雙”的頻率作為概率,設(shè)其在接下來的三場比賽中獲得“兩雙”的次數(shù)為,試比賽的大小關(guān)系(只需寫出結(jié)論).

【答案】;()見解析;(

【解析】試題分析:(1)根據(jù)題意得到概率;(2)由超幾何分布得到概率和分布列;(3)由條件得到符合二項分布,得到相應(yīng)的概率值進而得到方差.

解析:

)由題意,第 場次符合“兩雙”要求,

共有場比賽, 場符合要求,所求概率

的取值有, ,

,

,

的分布列為

期望

, , ,

,

,

,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2x,g(x)=-x2+2x+b.

(1)若f(x)++1≥0對任意的x∈[1,3]恒成立,求m的取值范圍;

(2)若x1,x2∈[1,3],對任意的x1,總存在x2,使得f(x1)=g(x2),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,側(cè)面ABB1A1為矩形,AB=2,AA1=2 ,D是AA1的中點,BD與AB1交于點O,且CO⊥平面ABB1A1

(1)證明:CD⊥AB1;
(2)若OC=OA,求直線CD與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義: =a1a4﹣a2a3 , 若函數(shù)f(x)= ,將其圖象向左平移m(m>0)個單位長度后,所得到的圖象關(guān)于y軸對稱,則m的最小值是( )
A.
B.π
C.
D.π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(m+x)(1+x)3的展開式中x的奇數(shù)次冪項的系數(shù)之和為16,則 xmdx=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為奇函數(shù).

(1)求實數(shù)k的值;

(2)判斷函數(shù)fx)在(3,+∞)上的單調(diào)性,并利用定義證明;

(3)解關(guān)于x的不等式f(2x+6)>f(4x+3×2x+3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在底面是正方形的四棱錐中, , ,點上,且.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=是定義在R上的奇函數(shù);

(1)求a、b的值,判斷并證明函數(shù)y=fx)在區(qū)間(1,+∞)上的單調(diào)性

(2)已知k<0且不等式ft2-2t+3)+fk-1)<0對任意的tR恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=2x-P2-x,則下列結(jié)論正確的是( 。

A. 為奇函數(shù)且為R上的減函數(shù)

B. ,為偶函數(shù)且為R上的減函數(shù)

C. ,為奇函數(shù)且為R上的增函數(shù)

D. 為偶函數(shù)且為R上的增函數(shù)

查看答案和解析>>

同步練習冊答案