【題目】已知函數(shù)f(x)=2x,g(x)=-x2+2x+b.
(1)若f(x)++1≥0對(duì)任意的x∈[1,3]恒成立,求m的取值范圍;
(2)若x1,x2∈[1,3],對(duì)任意的x1,總存在x2,使得f(x1)=g(x2),求b的取值范圍.
【答案】(1)[-6,-∞); (2)見(jiàn)解析.
【解析】
(1)根據(jù)h(x)=f(x)1,結(jié)合勾函數(shù)的性質(zhì)對(duì)任意的x∈[1,3]恒成立,即可求解m的取值范圍;
(2)根據(jù)對(duì)任意的x1,總存在x2,使得f(x1)=g(x2),可得f(x)的值域是g(x)的值域的子集,即可求解b的范圍;
(1)函數(shù)f(x)=2x,令h(x)=f(x)++1=;
①當(dāng)m=0時(shí),可得h(x)=2x+1在x∈[1,3]恒成立;
②當(dāng)m<0時(shí),可知f(x)=2x是遞增函數(shù),y=在x∈[1,3]也是遞增函數(shù),
∴h(x)在x∈[1,3]是遞增函數(shù),此時(shí)h(x)min=h(1)=≥0,
可得:-6≤m<0;
③當(dāng)m>0時(shí),,所以函數(shù)h(x)=,滿足題意.
綜上所述:f(x)++1≥0對(duì)任意的x∈[1,3]恒成立,可得m的取值范圍是[-6,-∞);
(2)由函數(shù)f(x)=2x,x∈[1,3],
可得:2≤f(x)≤8;
由g(x)=-x2+2x+b.其對(duì)稱x=1,開(kāi)口向下.
∵x∈[1,3],
∴g(x)在x∈[1,3]上單調(diào)遞減.
g(x)max=g(1)=1+b;
g(x)min=g(3)=-3+b;
∵對(duì)任意的x1,總存在x2,使得f(x1)=g(x2),
∴f(x)的值域是g(x)的值域的子集;
即,
解得:無(wú)解.
故x1,x2∈[1,3],對(duì)任意的x1,總存在x2,使得f(x1)=g(x2),此是b的取值范圍是空集.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),圓:.
(1)若點(diǎn)為圓上的動(dòng)點(diǎn),求線段中點(diǎn)所形成的曲線的方程;
(2)若直線過(guò)點(diǎn),且被(1)中曲線截得的弦長(zhǎng)為2,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)S是實(shí)數(shù)集R的非空子集,若對(duì)任意x,y∈S,都有x+y,x-y,xy∈S,則稱S為封閉集.下列命題:①集合S={a+b|a,b為整數(shù)}為封閉集;②若S為封閉集,則一定有0∈S;③封閉集一定是無(wú)限集;④若S為封閉集,則滿足STR的任意集合T也是封閉集.其中真命題是________.(寫出所有真命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(2)求函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方體ABCD—A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上.
(Ⅰ)求異面直線D1E與A1D所成的角;
(Ⅱ)若平面D1EC與平面ECD的夾角大小為45°,求點(diǎn)B到平面D1EC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于直徑為BC的圓O,過(guò)點(diǎn)A作圓O的切線交CB的延長(zhǎng)線于點(diǎn)P,∠BAC的平分線分別交BC和圓O于點(diǎn)D、E,若PA=2PB=10.
(1)求證:AC=2AB;
(2)求ADDE的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={|=},B={|<- 4或>2}.
(1) 若m= -2, 求A∩(RB)
(2)若A∪B=B,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n和為Sn , a1=2,當(dāng)n≥2時(shí),2Sn﹣an=n,則S2016的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在籃球比賽中,如果某位球員的得分,籃板,助攻,搶斷,蓋帽中有兩個(gè)值達(dá)到或以上,就稱該球員拿到了兩雙.下表是某球員在最近五場(chǎng)比賽中的數(shù)據(jù)統(tǒng)計(jì):
場(chǎng)次 | 得分 | 籃板 | 助攻 | 搶斷 | 蓋帽 |
()從上述比賽中任選場(chǎng),求該球員拿到“兩雙”的概率.
()從上述比賽中任選場(chǎng),設(shè)該球員拿到“兩雙”的次數(shù)為,求的分布列及數(shù)學(xué)期望.
()假設(shè)各場(chǎng)比賽互相獨(dú)立,將該球員在上述比賽中獲得“兩雙”的頻率作為概率,設(shè)其在接下來(lái)的三場(chǎng)比賽中獲得“兩雙”的次數(shù)為,試比賽與的大小關(guān)系(只需寫出結(jié)論).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com