已知△ABC中,a=4,b=4
3
,A=30°,則角B等于( 。
A、30°
B、30°或150°
C、60°或120°
D、60°
考點:正弦定理
專題:解三角形
分析:利用正弦定理即可得出.
解答: 解:∵
a
sinA
=
b
sinB
,∴sinB=
bsinA
a
=
4
3
×sin30°
4
=
3
2

∵b>a,B∈[0°,180°),
∴B=60°或120°.
故選:C.
點評:本題考查了正弦定理的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,ABCD-A1B1C1D1為正方體.
(1)求證:B1D1∥平面BC1D;
(2)求異面直線B1D1與BC1所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)學考試中,小明的成績在80分以上的概率為0.69,在70-79分的概率為0.15,在60-69分的概率為0.09,則小明不及格的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果a>b>0,那么下列不等式一定不成立的是( 。
A、log3a>log3b
B、(
1
4
a<(
1
4
b
C、a2+b2<2a+2b-2
D、a-
1
a
>b-
1
b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin2x+
3
cos2x,則f(x)的對稱中心坐標是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若a:b:c=2:3:4,求
2sinA-sinB
sin2C
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù) f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)設△ABC的內(nèi)角A,B,C的對邊分別為a,b,c且c=
3
,f(C)=0.若sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果sin(α+π)cos(α-π)=
1
2
,則tanα=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中既是偶函數(shù)又在(0,+∞)上是增函數(shù)的是( 。
A、y=|x|+1
B、y=x3
C、y=
lnx
x
D、y=2-|x|

查看答案和解析>>

同步練習冊答案