計(jì)算:
(1)(x
1
2
x
1
3
6    
(2)lg5+log36+lg2-log32.
考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì),有理數(shù)指數(shù)冪的化簡(jiǎn)求值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用分?jǐn)?shù)指數(shù)冪的運(yùn)算法則求解.
(2)利用對(duì)數(shù)的運(yùn)算法則求解.
解答: 解:(1)(x
1
2
x
1
3
6    
=x3x2
=x5
(2)lg5+log36+lg2-log32
=(lg5+lg2)+(log36-log32)
=1+1=2.
點(diǎn)評(píng):本題考查對(duì)數(shù)式和指數(shù)式的求值,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意運(yùn)算法則的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)的最小值為1,f(0)=f(2)=3,g(x)=f(x)-ax (a∈R).
(1)求f(x)的解析式;
(2)若g(x)在[-1,1]上的最小值為1,求實(shí)數(shù)a的值;
(3)若在區(qū)間[-1,1]上,y=g(x)的圖象恒在y=2x+7的圖象下方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(m+1)3<(3-2m)3,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4x3-3x2sinθ+
1
32
,其中x∈R,θ為參數(shù),且0≤θ<π.
(1)當(dāng)θ=0時(shí),判斷函數(shù)f(x)是否有極值,說明理由;
(2)要使函數(shù)f(x)的極小值大于零,求參數(shù)θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3ax(a∈R),
(1)當(dāng)a=2時(shí),求y=f(x)在點(diǎn)x=1的切線方程;
(2)若直線x+y+m=0對(duì)任意的m∈R都不是曲線y=f(x)的切線,求a的取值范圍;
(3)設(shè)g(x)=|f(x)|,x∈[-1,1],求g(x)的最大值F(a)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD和梯形BEFC所在的平面互相垂直,BE∥CF,BE<CF,∠BCF=
π
2
,AD=
3
,EF=2CD=2.
(Ⅰ)求證:DF∥平面ABE;
(Ⅱ)求直線AF與平面ABCD所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:方程
x2
4-t
+
y2
t-2
=1所表示的曲線為焦點(diǎn)在x軸上的橢圓;命題q:曲線y=x2+(2t-3)x+1與x軸交于不同的兩點(diǎn).如果“p∨q”為真,“p∧q”為假,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

公差不為0的等差數(shù)列{an}的前21項(xiàng)的和等于前8項(xiàng)的和,若a8+ak=0,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=cos2x+sin2x的最小值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案