已知首項(xiàng)為的等比數(shù)列{an}不是遞減數(shù)列,其前n項(xiàng)和為Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差數(shù)列.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)Tn=Sn- (n∈N*),求數(shù)列{Tn}的最大項(xiàng)的值與最小項(xiàng)的值.

 

(1)an=(-1)n-1·.

(2)最大項(xiàng)的值為,最小項(xiàng)的值為-.

【解析】【解析】
(1)設(shè)等比數(shù)列{an}的公比為q,

∵S3+a3,S5+a5,S4+a4成等差數(shù)列,

∴S5+a5-S3-a3=S4+a4-S5-a5,

即4a5=a3,

于是q2=.

又{an}不是遞減數(shù)列且a1=,∴q=-.

故等比數(shù)列{an}的通項(xiàng)公式為an=(-1)n-1·.

(2)由(1)得Sn=1-(-)n=

當(dāng)n為奇數(shù)時(shí),Sn隨n的增大而減小,

∴1<Sn≤S1=,

故0<Sn-≤S1-.

當(dāng)n為偶數(shù)時(shí),Sn隨n的增大而增大,

=S2≤Sn<1,

故0>Sn-≥S2-=-.

綜上,對(duì)于n∈N*,總有-≤Sn-.

∴數(shù)列{Tn}最大項(xiàng)的值為,最小項(xiàng)的值為-.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-4基本不等式(解析版) 題型:選擇題

設(shè)x,y∈R,a>1,b>1,若ax=by=2,a+=4,則的最大值為(  )

A.4 B.3 C.2 D.1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-5數(shù)列的綜合應(yīng)用(解析版) 題型:填空題

定義:稱為n個(gè)正數(shù)x1,x2,…,xn的“平均倒數(shù)”,若正項(xiàng)數(shù)列{cn}的前n項(xiàng)的“平均倒數(shù)”為,則數(shù)列{cn}的通項(xiàng)公式為cn=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-4數(shù)列求和(解析版) 題型:填空題

若數(shù)列{an}是正項(xiàng)數(shù)列,且+…+=n2+3n(n∈N*),則+…+=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-4數(shù)列求和(解析版) 題型:選擇題

若數(shù)列{an}為等比數(shù)列,且a1=1,q=2,則Tn =+…+的結(jié)果可化為(  )

A.1- B.1-

C.(1-) D. (1-)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-3等比數(shù)列及其前n項(xiàng)和(解析版) 題型:選擇題

等比數(shù)列{an}的前n項(xiàng)和為Sn,若a1+a2+a3+a4=1,a5+a6+a7+a8=2,Sn=15,則項(xiàng)數(shù)n為(  )

A.12 B.14 C.15 D.16

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-2等差數(shù)列及其前n項(xiàng)和(解析版) 題型:解答題

已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且第2項(xiàng)、第5項(xiàng)、第14項(xiàng)分別為等比數(shù)列{bn}的第2項(xiàng)、第3項(xiàng)、第4項(xiàng).

(1)求數(shù)列{an},{bn}的通項(xiàng)公式;

(2)設(shè)數(shù)列{cn}對(duì)n∈N*,均有+…+=an+1成立,求c1+c2+c3+…+c2014的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-1數(shù)列的概念與簡(jiǎn)單表示法(解析版) 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.已知a1=a,an+1=Sn+3n,n∈N*.

(1)設(shè)bn=Sn-3n,求數(shù)列{bn}的通項(xiàng)公式;

(2)若an+1≥an,n∈N*,求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-2平面向量的基本定理及坐標(biāo)表示(解析版) 題型:解答題

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知向量m=(cos,sin),n=(cos,sin),且滿足|m+n|=.

(1)求角A的大。

(2)若||+||=||,試判斷△ABC的形狀.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案