【題目】某學(xué)校舉行了一次安全教育知識競賽,競賽的原始成績采用百分制.已知高三學(xué)生的原始成績均分布在內(nèi),發(fā)布成績使用等級制,各等級劃分標(biāo)準(zhǔn)見表.

原始成績

85分及以上

70分到84

60分到69

60分以下

等級

優(yōu)秀

良好

及格

不及格

為了解該校高三年級學(xué)生安全教育學(xué)習(xí)情況,從中抽取了名學(xué)生的原始成績作為樣本進行統(tǒng)計,按照的分組作出頻率分布直方圖如圖所示其中等級為不及格的有5人,優(yōu)秀的有3人.

1)求和頻率分布直方圖中的的值;

2)根據(jù)樣本估計總體的思想,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若在該校高三學(xué)生中任選3人,求至少有1人成績是及格以上等級的概率;

3)在選取的樣本中,從原始成績在80分以上的學(xué)生中隨機抽取3名學(xué)生進行學(xué)習(xí)經(jīng)驗介紹,記表示抽取的3名學(xué)生中優(yōu)秀等級的學(xué)生人數(shù),求隨機變量的分布列及數(shù)學(xué)期望.

【答案】(1) ;(2) ;(3)答案見解析.

【解析】試題分析:

(1) 由題意可知,樣本容量,由頻率分布直方圖中小長方形面積之和為1可得.

(2)由題意可知,不及格的概率為0.1由對立事件概率公式可得至少有1人成績是及格以上等級的概率為;

(3)由題意可知原始成績在80分以上的學(xué)生有人,優(yōu)秀等級的學(xué)生有3人,則的取值可為0,1,2,3;計算相應(yīng)的概率值可得 , , ,據(jù)此列出分布列,計算可得的數(shù)學(xué)期望為.

試題解析:

1)由題意可知,樣本容量,

.

2)不及格的概率為0.1,設(shè)至少有1人成績是及格以上等級為事件,,故至少有1人成績是及格以上等級的概率為;

3)原始成績在80分以上的學(xué)生有人,優(yōu)秀等級的學(xué)生有3人,

的取值可為0,1,2,3;

, ,

,

的分布列為

0

1

2

3

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)(實數(shù)、為常數(shù)),且滿足

(1)求函數(shù)的解析式;

(2)試判斷函數(shù)在區(qū)間上的單調(diào)性,并用函數(shù)單調(diào)性定義證明;

(3)當(dāng)時,函數(shù)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先后拋擲兩枚骰子,設(shè)出現(xiàn)的點數(shù)之和是12,11,10的概率依次是P1,P2,P3,則(

(A)P1=P2<P3 (B)P1<P2<P3 (C)P1<P2=P3 (D)P3=P2<P1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為半圓的直徑,點是半圓弧上的兩點, , .曲線經(jīng)過點,且曲線上任意點滿足為定值.

(Ⅰ)求曲線的方程;

(Ⅱ)設(shè)過點的直線與曲線交于不同的兩點,求面積最大時的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中, ,底面為梯形, 平面.

(1)證明:平面平面;

(2)當(dāng)異面直線所成角為時,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 為自然對數(shù)的底數(shù), .

(1)試討論函數(shù)的單調(diào)性;

(2)當(dāng)時, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點是棱長為2的正方體的棱的中點,點在面所在的平面內(nèi),若平面分別與平面和平面所成的銳二面角相等,則點到點的最短距離是( )

A. B. C. 1 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品(百臺),其總成本為(萬元),其中固定成本為萬元,并且每生產(chǎn)百臺的生產(chǎn)成本為萬元(總成本固定成本生產(chǎn)成本).銷售收入(萬元)滿足,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:

1)寫出利潤函數(shù)的解析式(利潤銷售收入總成本);

2)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若,求證: .

查看答案和解析>>

同步練習(xí)冊答案