18.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{16}{3}$B.32C.$\frac{32}{3}$D.$\frac{64}{3}$

分析 由三視圖可知:該幾何體是一個(gè)四棱錐,后底面與下面的側(cè)面垂直.

解答 解:由三視圖可知:該幾何體是一個(gè)四棱錐,后底面與下面的側(cè)面垂直.
∴該幾何體的體積V=$\frac{1}{3}×$42×4=$\frac{64}{3}$.
故選:D.

點(diǎn)評(píng) 本題考查了三視圖的有關(guān)計(jì)算、四棱錐的體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.(1)$\frac{tan(π-a)•cos(2π-a)•sin(-a+\frac{3}{2}π)}{cos(-a-π)•sin(-π-a)}$.
(2)tan70°cos10°($\sqrt{3}$tan20°-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖所示,分別以A,B,C為圓心,在△ABC內(nèi)作半徑為2的扇形(圖中的陰影部分),在△ABC內(nèi)任取一點(diǎn)P,如果點(diǎn)P落在陰影部分的概率為$\frac{1}{4}$,那么△ABC的面積是8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.網(wǎng)格紙的各小格都是邊長(zhǎng)為1的正方形,圖中粗實(shí)線畫出的是一個(gè)幾何體的三視圖,其中正視圖是正三角形,則該幾何體的外接球表面積為( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.$\frac{16π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖1,在直角梯形ABCD中,AB∥CD,∠DAB=90°,點(diǎn)E、F分別在CD、AB上,且EF⊥CD,BE⊥BC,BC=1,CE=2.現(xiàn)將矩形ADEF沿EF折起,使平面ADEF與平面EFBC垂直(如圖2).
(Ⅰ)求證:CD∥面ABF;
(Ⅱ)當(dāng)AF的長(zhǎng)為何值時(shí),二面角A-BC-F的大小為30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在極坐標(biāo)系中,圓C的方程為ρ=2asinθ (a>0).以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=3t+1}\\{y=4t+3}\end{array}}\right.$(t為參數(shù)).
(Ⅰ)求圓C的標(biāo)準(zhǔn)方程和直線l的普通方程;
(Ⅱ)若直線l與圓C交于A,B兩點(diǎn),且$|{AB}|≥\sqrt{3}a$.求實(shí)數(shù)a的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖1,已知四邊形ABCD為菱形,且∠A=60°,AB=2,E為AB 的中點(diǎn).現(xiàn)將四邊形EBCD沿DE折起至EBHD,如圖2.

(Ⅰ)求證:DE⊥平面ABE;
(Ⅱ)若二面角A-DE-H的大小為$\frac{π}{3}$,求平面ABH與平面ADE所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x^2},x≥0\\-{x^2},x<0\end{array}$,若f(a2)<f(2-a),則實(shí)數(shù)a的取值范圍是(-2,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知f(x)=$\left\{{\begin{array}{l}{ln(x+1)}&{(x≥0)}\\{{e^x}-1}&{(x<0)}\end{array}}$,若函數(shù)y=f(x)-kx恒有一個(gè)零點(diǎn),則k的取值范圍為( 。
A.k≤0B.k≤0或k≥1C.k≤0或k≥eD.k≤0或k≥$\frac{1}{e}$

查看答案和解析>>

同步練習(xí)冊(cè)答案