2.如圖所示,分別以A,B,C為圓心,在△ABC內(nèi)作半徑為2的扇形(圖中的陰影部分),在△ABC內(nèi)任取一點(diǎn)P,如果點(diǎn)P落在陰影部分的概率為$\frac{1}{4}$,那么△ABC的面積是8π.

分析 由題意知本題是一個(gè)幾何概型,先試驗(yàn)發(fā)生包含的所有事件是三角形的面積S,然后求出陰影部分的面積,代入幾何概率的計(jì)算公式即可求解.

解答 解:由題意知本題是一個(gè)幾何概型,設(shè)△ABC的面積為S,
∵陰影部分的面積S1=$\frac{1}{2}$•π•22=2π,點(diǎn)P落在陰影部分的概率為$\frac{1}{4}$,
∴$\frac{2π}{S}$=$\frac{1}{4}$,
故S=8π.
故答案為:8π.

點(diǎn)評 本題考查幾何概型,且把幾何概型同幾何圖形的面積結(jié)合起來,正確求出陰影部分的面積是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知某種彩票發(fā)行1000000張,中獎率為0.001,則下列說法正確的是(  )
A.買1張肯定不中獎B.買1000張一定能中獎
C.買1000張也不一定能中獎D.買1000張一定恰有1張能中獎

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某商場連續(xù)10天對甲商品每天的銷售量(單位:件)進(jìn)行了統(tǒng)計(jì),得到如圖所示的莖葉圖,據(jù)該圖估計(jì)商店一天的銷售量不低于40件的頻率為( 。
A.$\frac{2}{5}$B.$\frac{1}{2}$C.$\frac{3}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如圖部分頻率分布直方圖.觀察圖形的信息,回答下列問題.
(Ⅰ)從該校高三模擬考試的成績中隨機(jī)抽取一份,利用隨機(jī)事件頻率估計(jì)概率,求數(shù)學(xué)分?jǐn)?shù)恰在[120,130)內(nèi)的頻率;
(Ⅱ)估計(jì)本次考試的中位數(shù);
(Ⅱ)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至多有1人在分?jǐn)?shù)段[120,130)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在(2-x)14(x∈R,x≠0)的展開式中,已知第2r項(xiàng)與第r+1項(xiàng)((r≠1)的二項(xiàng)式系數(shù)相等.
(Ⅰ)求r的值;
(Ⅱ)若該展開式的第r項(xiàng)的值與倒數(shù)第r項(xiàng)的值相等,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知f(α)=$\frac{cos(π-α)sin(\frac{3}{2}π+α)}{cosα}$.
(1)若α為第二象限角且f(α)=-$\frac{3}{5}$,求$\frac{sin2α+cos2α+1}{1+tanα}$的值;
(2)若5f(α)=4f(3α+2β).試問tan(2α+β)•tan(α+β)是否為定值(其中α≠kπ+$\frac{π}{2}$,α+β≠kπ+$\frac{π}{2}$,2α+β≠kπ+$\frac{π}{2}$,3α+2β≠kπ+$\frac{π}{2}$,k∈Z)?若是,請求出定值;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知矩陣$M=[{\begin{array}{l}{-1}&2\\{\frac{5}{2}}&x\end{array}}]$的一個(gè)特征值為-2,求M2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{16}{3}$B.32C.$\frac{32}{3}$D.$\frac{64}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若函數(shù)y=f(x)的定義域D中恰好存在n個(gè)值x1,x2,…,xn滿足f(-xi)=f(xi)(i=1,2,…,n),則稱函數(shù)y=f(x)為定義域D上的“n度局部偶函數(shù)”.已知函數(shù)g(x)=$\left\{\begin{array}{l}{sin(\frac{π}{2}x)-1,x<0}\\{lo{g}_{a}x(a>0,a≠1),x>0}\end{array}\right.$是定義域(-∞,0)∪(0,+∞)上的“3度局部偶函數(shù)”,則a的取值范圍是($\frac{1}{4}$,$\frac{1}{2}$).

查看答案和解析>>

同步練習(xí)冊答案