6.已知函數(shù)$f(x)=\left\{\begin{array}{l}x,|x|≤1\\ sin\frac{π}{2}x,|x|>1\end{array}\right.$則下列結(jié)論正確的是(  )
A.函數(shù)f(x)在$[-\frac{π}{2},\frac{π}{2}]$上單調(diào)遞增B.函數(shù)f(x)的值域是[-1,1]
C.?x0∈R,f(-x0)≠-f(x0D.?x∈R,f(-x)≠f(x)

分析 根據(jù)分段函數(shù)的表達(dá)式,作出函數(shù)f(x)的圖象,根據(jù)函數(shù)單調(diào)性,值域以及奇偶性的性質(zhì)進(jìn)行判斷即可.

解答 解:作出f(x)的圖象如圖,
A.則函數(shù)在[-1,1]上為增函數(shù),則[1,$\frac{π}{2}$]上是減函數(shù),則函數(shù)f(x)在$[-\frac{π}{2},\frac{π}{2}]$上單調(diào)遞增錯(cuò)誤,
B.函數(shù)f(x)的值域是[-1,1],故B正確,
C.當(dāng)-1≤x≤1時(shí),滿足f(-x)=-f(x),故C錯(cuò)誤,
D.當(dāng)x=2時(shí),f(-2)=f(2)=0,此時(shí)?x∈R,f(-x)≠f(x)不成立,故D錯(cuò)誤,
故選:B.

點(diǎn)評 本題主要考查命題的真假判斷,利用分段函數(shù)的表達(dá)式,作出函數(shù)的圖象,利用函數(shù)的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,角A,B,C所對的邊是a,b,c,已知a=2,則bcosC+ccosB等于( 。
A.1B.$\sqrt{2}$C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,a,b,c分別是A,B,C的對邊,且A=$\frac{2π}{3}$,b+2c=8,則當(dāng)△ABC的面積取得最大值時(shí),a的值為2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)A1(-2$\sqrt{2}$,0),A2(2$\sqrt{2}$,0),P是動點(diǎn),且直線A1P與A2P的斜率之積等于-$\frac{1}{2}$.
(1)求動點(diǎn)P的軌跡E的方程;
(2)設(shè)軌跡E的左右焦點(diǎn)分別為F1,F(xiàn)2,作兩條互相垂直的直線MF1和MF2與軌跡E的交點(diǎn)分別為A,B和C,D,求證:$\frac{1}{|AB|}$+$\frac{1}{|CD|}$恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}的前n項(xiàng)和Sn=-an-${(\frac{1}{2})}^{n-1}$+2(n∈N*).?dāng)?shù)列{bn}滿足bn=2nan
(1)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)cn=log2$\frac{n}{{a}_{n}}$,數(shù)列{$\frac{1}{{c}_{n}{c}_{n+1}}$}的前n項(xiàng)和為Tn.若不等式λ≤Tn對任愈的n∈N*恒成立,求實(shí)數(shù)λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知F1、F2是橢圓的兩個(gè)焦點(diǎn),若存在滿足$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=0的點(diǎn)M在橢圓外部,則橢圓離心率的取值范圍是( 。
A.(0,1)B.($\frac{1}{2}$,1)C.($\frac{\sqrt{2}}{2}$,1)D.[$\frac{\sqrt{2}}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}-3x(x≥0)}\\{ln(1-x)(x<0)}\end{array}\right.$,若|f(x)+4|≥a(x-1),則a的取值范圍是( 。
A.[-1,3]B.[0,6]C.[0,5]D.[0,12]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知a,b為正實(shí)數(shù),直線x+y+a=0與圓(x-b)2+(y-1)2=2相切,則$\frac{(3-2b)^{2}}{2a}$的最小值是( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=$\sqrt{\frac{lnx}{2-x}}$的定義域?yàn)椋?,2).

查看答案和解析>>

同步練習(xí)冊答案