4.在平面直角坐標系中,設(shè)A、B、C是曲線y=$\frac{1}{x-1}$上三個不同的點,且D、E、F分別為BC、CA、AB的中點,則過D、E、F三點的圓一定經(jīng)過定點(1,0).

分析 曲線y=$\frac{1}{x-1}$的對稱中心為(1,0),取過對稱中心直線與曲線交于A,B,A,B中點為對稱中心(1,0),即可得出結(jié)論.

解答 解:曲線y=$\frac{1}{x-1}$的對稱中心為(1,0),取過對稱中心直線與曲線交于A,B,A,B中點為對稱中心(1,0),
∴過D、E、F三點的圓一定經(jīng)過定點(1,0).
故答案為(1,0).

點評 本題考查圓的方程,考查學(xué)生的計算能力,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若執(zhí)行如圖所示程序框圖,則輸出的s值為( 。
A.-2016B.2016C.-2017D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c.
(Ⅰ)若C=2B,求證:cosA=3cosB-4cos3B;
(Ⅱ)若bsinB-csinC=a,且△ABC的面積S=$\frac{^{2}+{c}^{2}-{a}^{2}}{4}$,求角B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若二次函數(shù) y=x2+mx+1有兩個不同的零點,則m的取值范圍是(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,若sinA+sinB=sinC(cosA+cosB),此三角形的形狀是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.用1,2,3,4組成無重復(fù)數(shù)字的三位數(shù),這些數(shù)能被2整除的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.函數(shù)f(x)=lnx-mx
(Ⅰ)若曲線y=f(x)過點P(1,-1),求曲線y=f(x)在點P處的切線方程;
(Ⅱ)求函數(shù)y=f(x)在區(qū)間[1,e]上的最大值;
(Ⅲ)若x∈[1,e],求證:lnx<$\frac{x}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,函數(shù)f(x)的圖象是曲線OAB,其中點O,A,B的坐標分別為(0,0),(1,2),(3,1),則$f[{\frac{1}{f(3)}}]$的值等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)=\sqrt{3}sin2x-2{cos^2}x$.
(1)若$β∈[{0,\frac{π}{2}}]$,求f(β)的取值范圍;
(2)若$tanα=2\sqrt{3}$,求f(α)的值.

查看答案和解析>>

同步練習冊答案