11.已知f(x)=x+ln(x+1),那么f′(0)=2.

分析 根據(jù)題意,對函數(shù)f(x)求導(dǎo)可得f′(x)的解析式,將x=0代入即可得答案.

解答 解:根據(jù)題意,f(x)=x+ln(x+1),
則其導(dǎo)數(shù)f′(x)=1+$\frac{1}{x+1}$,
則f′(0)=1+1=2;
故答案為:2.

點評 本題考查導(dǎo)數(shù)的計算,關(guān)鍵是掌握導(dǎo)數(shù)的計算公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合M={-1,0,1,2,3},N={x|x2-2x≤0},則M∩N=( 。
A.{1,2}B.{2,3}C.{-1,0,3}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)復(fù)數(shù)z=1+i,則復(fù)數(shù)z+$\frac{1}{z}$的虛部是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在${({3\sqrt{x}+\frac{1}{x}})^n}$的展開式中,各項系數(shù)的和為p,其二項式系數(shù)之和為q,若64是p與q的等比中項,則n=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.以下式子正確的個數(shù)是( 。
①($\frac{1}{x}$)′=$\frac{1}{{x}^{2}}$  ②(cosx)′=-sinx   ③(2x)′=2xln2  ④(lgx)′=$\frac{-1}{xln10}$.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的前n項和為Sn,且滿足a1=$\frac{1}{2}$,2Sn-SnSn-1=1(n≥2).
(1)猜想Sn的表達式,并用數(shù)學(xué)歸納法證明;
(2)設(shè)bn=$\frac{n{a}_{n}}{1+30{a}_{n}}$,n∈N*,求bn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.關(guān)于殘差和殘差圖,下列說法正確的是( 。
(1)殘差就是隨機誤差
(2)殘差圖的縱坐標是殘差
(3)殘差點均勻分布的帶狀區(qū)域的寬度越窄,說明模型擬合精度越高
(4)殘差點均勻分布的帶狀區(qū)域的寬度越窄,說明模型擬合精度越低.
A.(1)(2)B.(3)(4)C.(2)(3)D.(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知數(shù)列{an}滿足a1=4,an+1=an+2n,設(shè)bn=$\frac{{a}_{n}}{n}$,若存在正整數(shù)T,使得對一切n∈N*,bn≥T恒成立,則T的最大值為(  )
A.1B.2C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若函數(shù)y=f(x)的圖象上每一點的縱坐標保持不變,橫坐標伸長到原來的2倍,再將整個圖象沿x軸向右平移$\frac{π}{2}$個單位,沿y軸向下平移1個單位,得到函數(shù)y=$\frac{1}{2}$sinx的圖象,則y=f(x)的解析式為(  )
A.y=$\frac{1}{2}$sin(2x+$\frac{π}{2}$)+1B.y=$\frac{1}{2}$sin(2x-$\frac{π}{2}$)+1C.y=$\frac{1}{2}$sin($\frac{1}{2}$x+$\frac{π}{4}$)+1D.y=$\frac{1}{2}$sin($\frac{1}{2}$x-$\frac{π}{4}$)+1

查看答案和解析>>

同步練習(xí)冊答案