在區(qū)間[-1,1]上任取兩個數(shù)a、b,則點(-1,1)與點(1,1)在直線ax+by+1=0的兩側的概率等于(  )
A、
1
4
B、
3
4
C、
1
8
D、
7
8
考點:幾何概型
專題:概率與統(tǒng)計
分析:由題意本題滿足幾何概型,首先明確試驗對應的去面積,然后明確滿足條件的事件的區(qū)域面積,由幾何概型概率公式解答.
解答: 解:由題意,本題滿足幾何概型,事件對應的區(qū)域的面積為2×2=4,
滿足點(-1,1)與點(1,1)在直線ax+by+1=0的兩側等價于
-a+b+1>0
a+b+1<0
-a+b+1<0
a+b+1>0
,滿足條件的區(qū)域面積為1,如圖

由幾何概型概率公式得在區(qū)間[-1,1]上任取兩個數(shù)a、b,則點(-1,1)與點(1,1)在直線ax+by+1=0的兩側的概率等于
1
4
;
故選A.
點評:本題考查了幾何概型的概率求法;關鍵是明確試驗的區(qū)域采用的測度是長度還是面積或者體積,要由題目特征選擇,本題與線性規(guī)劃相結合,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的首項為a(a>0),且滿足an+1=an2+a1(n∈N*),若數(shù)列{an}滿足:對于任意正整數(shù)n≥2,都有0<an≤2,則稱實數(shù)a為數(shù)列{an}的伴侶數(shù),記A事所有伴侶數(shù)構成的集合.
(1)若a∈(1,+∞),求證:a∉A;
(2)若a∈(0,
1
4
),求證:a∈A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)z1=1+i,z2=3+ai,且3z1=z2,則a=( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知在三棱柱ABC-A1B1C1中,AC=4,BC=3,BC1=5,點D在線段AB上,AD=3,BD=2,四邊形ACC1A1為正方形.
(1)求證:BC⊥AC1
(2)請判斷AC1是否平行于平面B1CD(不用證明);
(3)求三棱錐C1-CDB1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1-m•2x
1+m•2x
,若函數(shù)f(x)滿足|f(x)|≤3對任意x∈[0,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若方程
x2
3
-
y2
sin(2θ+
π
4
)
=1的曲線是橢圓,則θ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,CF是△ABC邊AB上的高,F(xiàn)P⊥BC,F(xiàn)Q⊥AC.
(1)證明:A、B、P、Q四點共圓;
(2)若CQ=4,AQ=1,PF=
4
5
3
,求CB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的對稱軸為坐標軸,兩個頂點間的距離為2,焦點到漸進線的距離為
2
,求該雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方體ABCD-A1B1C1D1中棱長為2,E為A1B1的中點,則異面直線D1E與BC1間的距離為
 

查看答案和解析>>

同步練習冊答案