已知tanx=2,π<x<2π.
(1)求cosx的值;
(2)求數(shù)學(xué)公式的值.

解:(1)由得tanx=2得=2,于是sin2x=4cos2x,…(3分)
1-cos2x=4cos2x,cos2x=.…(5分)
又π<x<2π,tanx>0,故cosx<0,所以.…(7分)
(2)sinx=tanxcosx=-,…(9分)sin2x=2sinxcosx=,cos2x=2cos2x-1=-.…(13分)
所以==.…(16分)
分析:(1)利用同角三角函數(shù)基本關(guān)系式以及角的范圍直接求解即可.
(2)首先由(1)求出sinx進(jìn)而求sin2x和cos2x,然后利用兩角和與差的正弦公式將相應(yīng)的值代入即可求出結(jié)果.
點評:本題考查同角三角函數(shù)基本關(guān)系式的應(yīng)用以及兩角和與差的正弦函數(shù),計算要準(zhǔn)確.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知tanx=2,求下列各式的值
(1)
cosx+sinxcosx-sinx

(2)sinxcosx-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanx=2,
(1)求
cosx+sinx
cosx-sinx
的值    
(2)求
2
3
sin2x+
1
4
cos2x
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanx=2,那么
1
2
sin2x+
1
3
cos2x=
7
15
7
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanx=2,則
3sinx+2cosx3cosx-sinx
的值為
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanx=2,求2sin2x-sinxcosx+cos2x的值.

查看答案和解析>>

同步練習(xí)冊答案