A. | [2kπ,(2k+1)π] | B. | [2kπ+π,(2k+1)π] | ||
C. | [2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$] | D. | [2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$](以上k∈Z) |
分析 直接利用正弦函數(shù)的單調(diào)減區(qū)間求出函數(shù)的單調(diào)增區(qū)間即可.
解答 解:由函數(shù)y=sinx的性質(zhì)知,其在區(qū)間[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$],k∈Z上是減函數(shù),
由復(fù)合函數(shù)求單調(diào)性法則可知:函數(shù)y=1-sinx(x∈R)在[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$]單調(diào)遞增,
∴函數(shù)y=1-sinx的單調(diào)遞增區(qū)間[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$],k∈Z,
故答案選:D.
點(diǎn)評 題的關(guān)鍵是熟練掌握正弦函數(shù)的單調(diào)性,熟知其單調(diào)區(qū)間的形式,考查計(jì)算能力,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)關(guān)于x=$\frac{5}{9}$π對稱 | |
B. | 函數(shù)f(x)向左平移$\frac{π}{18}$個(gè)單位后是奇函數(shù) | |
C. | 函數(shù)f(x)關(guān)于點(diǎn)($\frac{π}{18}$,0)中心對稱 | |
D. | 函數(shù)f(x)在區(qū)間[0,$\frac{π}{20}$]上單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com