5.已知函數(shù)f(x)=$cosx•sin(x+\frac{π}{6})$
(1)求函數(shù)f(x)的最小正周期;’
(2)將函數(shù)y=f(x)的圖象向下平移$\frac{1}{4}$個單位,再將圖象上各點的縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,求使g(x)>$\frac{1}{2}$成立的x的取值集合.

分析 (1)利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的周期性,求得它的最小正周期.
(2)利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,再利用正弦函數(shù)的圖象特征,求得g(x)>$\frac{1}{2}$的解集.

解答 解:(1)函數(shù)f(x)=$cosx•sin(x+\frac{π}{6})$=cosx($\frac{\sqrt{3}}{2}$sinx+$\frac{1}{2}$cosx)=$\frac{\sqrt{3}}{4}$sin2x+$\frac{1+cos2x}{4}$=$\frac{1}{2}$sin(2x+$\frac{π}{6}$)+$\frac{1}{4}$,
∴它的最小正周期為$\frac{2π}{2}$=π.
(2)將函數(shù)y=f(x)的圖象向下平移$\frac{1}{4}$個單位,可得函數(shù)y=$\frac{1}{2}$sin(2x+$\frac{π}{6}$)的圖象;
再將圖象上各點的縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變),得到函數(shù)y=g(x)=sin(2x+$\frac{π}{6}$)的圖象,
由g(x)>$\frac{1}{2}$,可得sin(2x+$\frac{π}{6}$)>$\frac{1}{2}$,∴2kπ+$\frac{π}{6}$<2x+$\frac{π}{6}$<2kπ+$\frac{5π}{6}$,
求得kπ<x<kπ+$\frac{π}{3}$,故使不等式成立的x的取值集合為(kπ,kπ+$\frac{π}{3}$ ),k∈Z.

點評 本題主要考查三角恒等變換,正弦函數(shù)的周期性,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象特征,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),且f(x)=$\left\{\begin{array}{l}{log_3}({x+1}),x≥0\\ g(x),x<0\end{array}$,則g[f(-8)]=( 。
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)=$\sqrt{-{x^2}-2x+15}$,集合A={x|y=f(x)},B={y|y=f(x)},則如圖中陰影部分表示的集合為[-5,0)∪(3,4] .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,b(1-2cosA)=2acosB.
(1)證明:b=2c;
(2)若a=1,tanA=2$\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.某企業(yè)有員工750人,其中男員工有300人,為做某項調(diào)查,擬采用分層抽樣方法抽取容量為45的樣本,則女員工應(yīng)抽取的人數(shù)是27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{2^{-x}},x≤0}\\{{x^{\frac{1}{2}}},x>0}\end{array}}\right.$,f(x0)>1,則x0的取值范圍為( 。
A.(-∞,-1)∪(1,+∞)B.(-∞,-2)∪(2,+∞)C.(-∞,0)∪(1,+∞)D.(-∞,-3)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)等差數(shù)列{an}的前項和為Sn,若$m≠n,{S_m}={n^2},{S_n}={m^2}$,則Sn+m=( 。
A.0B.(m+n)2C.-(m+n)2D.(m-n)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知${(1-2x)^7}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_7}{x^7}$,求:
(1)a1+a2+…+a7;
(2)a1+a3+a5+a7;
(3)|a0|+|a1|+…+|a7|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列說法中,正確的個數(shù)是(  )
①與角$\frac{π}{5}$的終邊相同的角有有限個
②圓的半徑為6,則15°的圓心角與圓弧圍成的扇形面積為$\frac{3π}{2}$
③正相關(guān)是指散點圖中的點散布在從左上角到右下角區(qū)域
④cos260°>0.
A.0個B.1個C.2個D.3個

查看答案和解析>>

同步練習(xí)冊答案