【題目】某城市關(guān)系要好的四個(gè)家庭各有兩個(gè)小孩共8人,準(zhǔn)備使用滴滴打車軟件,分乘甲、乙兩輛汽車出去游玩,每車限坐4人,(乘同一輛車的4名小孩不考慮位置差異).
(1)共有多少種不同的乘坐方式?
(2)若戶家庭的孿生姐妹需乘同一輛車,則乘坐甲車的4名小孩恰有2名來自于同一個(gè)家庭的乘坐方式共有多少種?
【答案】(1)70(2)見解析
【解析】
(1) 由題意,從8個(gè)小孩中選取4人,可得,即可得到不同的乘車方式;
(2)由題意,根據(jù)A戶家庭的孿生姐妹在甲車上和A戶家庭的孿生姐妹不在甲車上,兩種情況求解,再用分類計(jì)數(shù)原理求解,即可得到答案.
(1)由題意,從8個(gè)小孩中選取4人,可得,即共有70中不同的乘車方式;
(2)①A戶家庭的孿生姐妹在甲車上,可以在剩下的3個(gè)家庭中任選2個(gè)家庭,再從每個(gè)家庭的2個(gè)小孩中任選一個(gè)來乘坐甲車,有種乘坐方式;
②A戶家庭的孿生姐妹不在甲車上,需要在剩下的3個(gè)家庭中任選1個(gè),讓其2個(gè)小孩都在甲車上,對(duì)于剩余的2個(gè)家庭,從每個(gè)家庭的2個(gè)小孩中任選1個(gè),來乘坐甲車,有種乘坐方式;
則共有種乘坐方式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于數(shù)列,若存在常數(shù)M,使得對(duì)任意,與中至少有一個(gè)不小于M,則記作,那么下列命題正確的是( ).
A.若,則數(shù)列各項(xiàng)均大于或等于M;
B.若,則;
C.若,,則;
D.若,則;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年11月、12月全國(guó)大范圍流感爆發(fā),為研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,一興趣小組抄錄了某醫(yī)院11月到12月間的連續(xù)6個(gè)星期的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期 | 第一周 | 第二周 | 第三周 | 第四周 | 第五周 | 第六周 |
晝夜溫差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)y(個(gè)) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn)。
(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)星期的概率;
(Ⅱ)若選取的是第一周與第六周的兩組數(shù)據(jù),請(qǐng)根據(jù)第二周到第五周的4組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(Ⅲ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考公式: )
參考數(shù)據(jù): 1092, 498
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為,離心率為,其右焦點(diǎn)為,過點(diǎn)作直線交橢圓于另一點(diǎn).
(Ⅰ)若,求的面積;
(Ⅱ)若過點(diǎn)的直線與橢圓相交于兩點(diǎn)、,設(shè)為上一點(diǎn),且滿足(為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組進(jìn)行“野島生存”實(shí)踐活動(dòng),他們?cè)O(shè)置了個(gè)取水敞口箱.其中個(gè)采用種取水法,個(gè)采用種取水法.如圖甲為種方法一個(gè)夜晚操作一次個(gè)水箱積取淡水量頻率分布直方圖,圖乙為種方法一個(gè)夜晚操作一次個(gè)水箱積取淡水量頻率分布直方圖.
(1)設(shè)兩種取水方法互不影響,設(shè)表示事件“法取水箱水量不低于,法取水箱水量不低于”,以樣本估計(jì)總體,以頻率分布直方圖中的頻率為概率,估計(jì)的概率;
(2)填寫下面列聯(lián)表,并判斷是否有的把握認(rèn)為箱積水量與取水方法有關(guān).
箱積水量 | 箱積水量 | 箱數(shù)總計(jì) | |
法 | |||
法 | |||
箱數(shù)總計(jì) |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中,E為線段AB的中點(diǎn),將△ADE沿直線DE翻折成△A′DE,使得平面A′DE⊥平面BCDE,F為線段A′C的中點(diǎn).
(Ⅰ)求證:BF∥平面A′DE;
(Ⅱ)求直線A′B與平面A′DE所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)一段圖象如圖所示。
(1)求出函數(shù)的解析式;
(2) 函數(shù)的圖像可由函數(shù)y=sinx的圖像經(jīng)過怎樣的平移和伸縮變換而得到?
(3) 求出的單調(diào)遞增區(qū)間;
(4) 指出當(dāng)取得最小值時(shí)的集合.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com