【題目】某興趣小組進(jìn)行“野島生存”實(shí)踐活動,他們設(shè)置了個取水敞口箱.其中個采用種取水法,個采用種取水法.如圖甲為種方法一個夜晚操作一次個水箱積取淡水量頻率分布直方圖,圖乙為種方法一個夜晚操作一次個水箱積取淡水量頻率分布直方圖.

(1)設(shè)兩種取水方法互不影響,設(shè)表示事件“法取水箱水量不低于,法取水箱水量不低于”,以樣本估計總體,以頻率分布直方圖中的頻率為概率,估計的概率;

(2)填寫下面列聯(lián)表,并判斷是否有的把握認(rèn)為箱積水量與取水方法有關(guān).

箱積水量

箱積水量

箱數(shù)總計

箱數(shù)總計

附:

【答案】(1);(2)見解析.

【解析】試題分析:(1)第(1)問,一般利用互斥事件的概率公式求解. (2)第(2)問,一般直接利用獨(dú)立性檢驗的公式求解.

試題解析:

(1)設(shè)“法取水箱水量不低于”為事件,“法取水箱水量不低于”為事件,

,

發(fā)生的概率為.

(2)列聯(lián)表:

箱積水量

箱積水量

箱數(shù)總計

箱數(shù)總計

,

,

∴有的把握認(rèn)為箱積水量與取水方法有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,,分別為橢圓的左、右焦點(diǎn),且.

(1)求橢圓的方程;

(2)設(shè)為橢圓上任意一點(diǎn),以為圓心,為半徑作圓,當(dāng)圓與直線有公共點(diǎn)時,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二1班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,且將全班25人的成績記為由右邊的程序運(yùn)行后,輸出.據(jù)此解答如下問題:

求莖葉圖中破損處分?jǐn)?shù)在[50,60,[70,80,[80,90各區(qū)間段的頻數(shù);

利用頻率分布直方圖估計該班的數(shù)學(xué)測試成績的眾數(shù)中位數(shù)分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,為坐標(biāo)原點(diǎn),是拋物線上異于的兩點(diǎn).

(1)求拋物線的方程;

(2)若直線的斜率之積為,求證:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市關(guān)系要好的四個家庭各有兩個小孩共8人,準(zhǔn)備使用滴滴打車軟件,分乘甲、乙兩輛汽車出去游玩,每車限坐4人,(乘同一輛車的4名小孩不考慮位置差異).

(1)共有多少種不同的乘坐方式?

(2)若戶家庭的孿生姐妹需乘同一輛車,則乘坐甲車的4名小孩恰有2名來自于同一個家庭的乘坐方式共有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

1)當(dāng)時,求的值域和單調(diào)減區(qū)間;

2)若存在單調(diào)遞增區(qū)間,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為拋物線上的兩點(diǎn),為坐標(biāo)原點(diǎn),且,則的面積的最小值為( )

A. 16 B. 8 C. 4 D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(常數(shù)).

(1)討論的單調(diào)性;

(2)設(shè)的導(dǎo)函數(shù),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,均為奇函數(shù),上的最大值為,則在的最小值為__________.

查看答案和解析>>

同步練習(xí)冊答案