【題目】已知,命題方程表示焦點在軸上的橢圓,命題方程表示雙曲線.
(1)若命題是真命題,求實數(shù)的范圍;
(2)若命題“或”為真命題,“且”是假命題,求實數(shù)的范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,其左焦點與拋物線的焦點重合.
(1)求橢圓的方程;
(2)過動點的直線交軸于點,交橢圓于點,在第一象限,,過點做軸的垂線交橢圓于點,連接并延長交橢圓于另一點.設(shè)直線的斜率分別為,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某教育培訓(xùn)中心共有25名教師,他們?nèi)吭谛M庾∷?為完全起見,學(xué)校派專車接送教師們上下班.這個接送任務(wù)承包給了司機(jī)王師傅,正常情況下王師傅用34座的大客車接送教師.由于每次乘車人數(shù)不盡相同,為了解教師們的乘車情況,王師傅連續(xù)記錄了100次的乘車人數(shù),統(tǒng)計結(jié)果如下:
乘車人數(shù) | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
頻數(shù) | 2 | 4 | 4 | 10 | 16 | 20 | 16 | 12 | 8 | 6 | 2 |
以這100次記錄的各乘車人數(shù)的頻率作為各乘車人數(shù)的概率.
(Ⅰ)若隨機(jī)抽查兩次教師們的乘車情況,求這兩次中至少有一次乘車人數(shù)超過18的概率;
(Ⅱ)有一次,王師傅的大客車出現(xiàn)了故障,于是王師傅準(zhǔn)備租一輛小客車來臨時送一次需要乘車的教師.可供選擇的小客車只有20座的型車和22座的型車兩種, 型車一次租金為80元, 型車一次租金為90元.若本次乘車教師的人數(shù)超過了所租小客車的座位數(shù),王師傅還要付給多出的人每人20元錢供他們乘出租車.以王師傅本次付出的總費用的期望值為依據(jù),判斷王師傅租哪種車較合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在[-1,1]上的奇函數(shù),且,若任意的,當(dāng)時,總有.
(1)判斷函數(shù)在[-1,1]上的單調(diào)性,并證明你的結(jié)論;
(2)解不等式:;
(3)若對所有的恒成立,其中(是常數(shù)),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 據(jù)觀測統(tǒng)計,某濕地公園某種珍稀鳥類的現(xiàn)有個數(shù)約只,并以平均每年的速度增加.
(1)求兩年后這種珍稀鳥類的大約個數(shù);
(2)寫出(珍稀鳥類的個數(shù))關(guān)于(經(jīng)過的年數(shù))的函數(shù)關(guān)系式;
(3)約經(jīng)過多少年以后,這種鳥類的個數(shù)達(dá)到現(xiàn)有個數(shù)的倍或以上?(結(jié)果為整數(shù))(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的定義域為,且對任意,有,且當(dāng)時.
(1)證明:是奇函數(shù);
(2)證明:在上是減函數(shù);
(3)求在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當(dāng)20≤x≤200時,車流速度v是車流密度x的一次函數(shù).
(1)當(dāng)0≤x≤200時,求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=xv(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,橢圓上的點到左焦點的距離的最大值為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知直線與橢圓交于、兩點.在軸上是否存在點,使得且,若存在,求出實數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com