【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)寫(xiě)出直線的普通方程及曲線的直角坐標(biāo)方程;
(2)已知點(diǎn),點(diǎn),直線過(guò)點(diǎn)且與曲線相交于,兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.
【答案】(1),(2)8
【解析】試題分析:
(1)消去參數(shù)可得的普通方程為,極坐標(biāo)方程化為直角坐標(biāo)方程可得曲線的直角坐標(biāo)方程為;
(2)易得點(diǎn)在上,所以,,所以的參數(shù)方程為,
聯(lián)立直線的參數(shù)方程與拋物線方程可得.結(jié)合參數(shù)的幾何意義可知.
試題解析:
(1)由直線的參數(shù)方程消去,得的普通方程為,
由得,
所以曲線的直角坐標(biāo)方程為;
(2)易得點(diǎn)在上,所以,所以,
所以的參數(shù)方程為,
代入中,得.
設(shè),,所對(duì)應(yīng)的參數(shù)分別為,,.
則,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在相同的條件下投籃5輪,每輪甲、乙各投籃10次,投籃命中次數(shù)的情況如圖所示(實(shí)線為甲的折線圖,虛線為乙的折線圖),則以下說(shuō)法錯(cuò)誤的是( )
A. 甲投籃命中次數(shù)的眾數(shù)比乙的小
B. 甲投籃命中次數(shù)的平均數(shù)比乙的小
C. 甲投籃命中次數(shù)的中位數(shù)比乙的大
D. 甲投籃命中的成績(jī)比乙的穩(wěn)定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)拋物線的焦點(diǎn),,分別是橢圓的左、右焦點(diǎn),且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與拋物線相切,且與橢圓交于,兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,⊥底面,是的中點(diǎn).
已知,,,.求:
(1)三棱錐PABC的體積;
(2)異面直線BC與AD所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體中,,分別是棱,的中點(diǎn),為棱上一點(diǎn),且平面.
(1)證明:為中點(diǎn);
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
若,求的單調(diào)區(qū)間;
是否存在實(shí)數(shù)a,使的最小值為0?若存在,求出a的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)的鎢礦資源儲(chǔ)量豐富,在全球已經(jīng)探明的鎢礦產(chǎn)資源儲(chǔ)量中占比近,居全球首位。中國(guó)又屬贛州鎢礦資源最為豐富,其素有“世界鎢都”之稱(chēng)。某科研單位在研發(fā)的鎢合金產(chǎn)品的過(guò)程中發(fā)現(xiàn)了一種新合金材料,由大數(shù)據(jù)測(cè)得該產(chǎn)品的性能指標(biāo)值與這種新合金材料的含量x(單位:克)的關(guān)系為:當(dāng)時(shí), 是的二次函數(shù);當(dāng)時(shí), .測(cè)得部分?jǐn)?shù)據(jù)如表.
x(單位:克) | 0 | 1 | 2 | 9 | … |
y | 0 | 3 | … |
(1)求y關(guān)于x的函數(shù)關(guān)系式y=
(2)求函數(shù)的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知以坐標(biāo)原點(diǎn)為圓心的圓與拋物線相交于不同的兩點(diǎn), ,與拋物線的準(zhǔn)線相交于不同的兩點(diǎn), ,且.
(1)求拋物線的方程;
(2)若不經(jīng)過(guò)坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn), ,且滿足.證明直線過(guò)定點(diǎn),并求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題α:函數(shù)的定義域是R;命題β:在R上定義運(yùn)算:xy=x(1-y).不等式(x-a)(x+a)<1對(duì)任意實(shí)數(shù)x都成立.
(1)若α、β中有且只有一個(gè)真命題,求實(shí)數(shù)a的取值范圍;
(2)若α、β中至少有一個(gè)真命題,求實(shí)數(shù)a的取值范圍;
(3)若α、β中至多有一個(gè)真命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com