【題目】已知以坐標原點為圓心的圓與拋物線相交于不同的兩點, ,與拋物線的準線相交于不同的兩點, ,且.
(1)求拋物線的方程;
(2)若不經(jīng)過坐標原點的直線與拋物線相交于不同的兩點, ,且滿足.證明直線過定點,并求出點的坐標.
科目:高中數(shù)學 來源: 題型:
【題目】如圖是一個幾何體的平面展開圖,其中四邊形ABCD為正方形,△PDC, △PBC, △PAB, △PDA為全等的等邊三角形,E、F分別為PA、PD的中點,在此幾何體中,下列結(jié)論中錯誤的為 ( )
A. 平面BCD⊥平面PAD B. 直線BE與直線AF是異面直線
C. 直線BE與直線CF共面 D. 面PAD與面PBC的交線與BC平行
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線關(guān)于軸對稱,頂點在坐標原點,直線經(jīng)過拋物線的焦點.
(1)求拋物線的標準方程;
(2)若不經(jīng)過坐標原點的直線與拋物線相交于不同的兩點, ,且滿足,證明直線過軸上一定點,并求出點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲袋中有1只黑球,3只紅球;乙袋中有2只黑球,1只紅球.
(1)從甲袋中任取兩球,求取出的兩球顏色不相同的概率;
(2)從甲,乙兩袋中各取一球,求取出的兩球顏色相同的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一網(wǎng)站營銷部為統(tǒng)計某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購情況,隨機抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購金額情況,如下表:
若將當日網(wǎng)購金額不小于2千元的網(wǎng)友稱為“網(wǎng)購達人”,網(wǎng)購金額小于2千元的網(wǎng)友稱為“網(wǎng)購探者”.已知“網(wǎng)購達人”與“網(wǎng)購探者”人數(shù)的比例為2:3.
(1)確定的值,并補全頻率分布直方圖;
(2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當日在該網(wǎng)店網(wǎng)購金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個不低于2千元,則該網(wǎng)店當日被評為“皇冠店”,試判斷該網(wǎng)店當日能否被評為“皇冠店”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)且是定義域為R的奇函數(shù).
求k值;
若,試判斷函數(shù)單調(diào)性并求使不等式恒成立的t的取值范圍;
若,且在上的最小值為,求m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(a+2cos2x)cos(2x+θ)為奇函數(shù),且f( )=0,其中a∈R,θ∈(0,π).
(1)求a,θ的值;
(2)若f( )=﹣ ,α∈( ,π),求sin(α+ )的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線關(guān)于軸對稱,頂點在坐標原點,直線經(jīng)過拋物線的焦點.
(1)求拋物線的標準方程;
(2)若不經(jīng)過坐標原點的直線與拋物線相交于不同的兩點, ,且滿足,證明直線過軸上一定點,并求出點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com