A. | $\frac{10}{13}$ | B. | -$\frac{5}{13}$ | C. | $\frac{5}{13}$ | D. | $\frac{12}{13}$ |
分析 由已知求得sin($\frac{π}{4}-α$),然后利用誘導公式及倍角公式化簡得答案.
解答 解:∵α∈(0,$\frac{π}{4}$),∴$\frac{π}{4}-α$∈(0,$\frac{π}{4}$),
又cos($\frac{π}{4}$-α)=$\frac{12}{13}$,
∴sin($\frac{π}{4}-α$)=$\sqrt{1-co{s}^{2}(\frac{π}{4}-α)}=\sqrt{1-(\frac{12}{13})^{2}}=\frac{5}{13}$.
又cos2α=sin($\frac{π}{2}-2α$)=2sin($\frac{π}{4}-α$)cos($\frac{π}{4}-α$).
∴$\frac{cos2α}{{sin(\frac{π}{4}+α)}}$=$\frac{2sin(\frac{π}{4}-α)cos(\frac{π}{4}-α)}{sin(\frac{π}{4}+α)}$=$\frac{2sin(\frac{π}{4}-α)cos(\frac{π}{4}-α)}{cos(\frac{π}{4}-α)}=2sin(\frac{π}{4}-α)$=$\frac{10}{13}$.
故選:A.
點評 本題考查三角函數(shù)的化簡求值,考查誘導公式與同角三角函數(shù)基本關(guān)系式的應用,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {0,2} | B. | {0,1,2} | C. | {-2,0,1,2} | D. | {-2,-1,0,1,2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | i>6? | B. | i≤6? | C. | i>5? | D. | i<5? |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com