11.已知$\sqrt{11-6\sqrt{2}}$的整數(shù)部分為a,小數(shù)部分為b.求a+b+$\frac{2}$的值.

分析 化簡$\sqrt{11-6\sqrt{2}}$=3-$\sqrt{2}$,求出它的整數(shù)部分a和小數(shù)部分b,求出a+b+$\frac{2}$的值.

解答 解:$\sqrt{11-6\sqrt{2}}$=$\sqrt{11-2\sqrt{18}}$
=$\sqrt{{(\sqrt{9}-\sqrt{2})}^{2}}$
=$\sqrt{9}$-$\sqrt{2}$
=3-$\sqrt{2}$;
因為1<$\sqrt{2}$<2,
所以3-$\sqrt{2}$的整數(shù)部分為a=1,
小數(shù)部分為b=(3-$\sqrt{2}$)-1=2-$\sqrt{2}$;
所以a+b+$\frac{2}$=1+(2-$\sqrt{2}$)+$\frac{2}{2-\sqrt{2}}$
=3-$\sqrt{2}$+$\frac{2(2+\sqrt{2})}{{2}^{2}{-(\sqrt{2})}^{2}}$
=3-$\sqrt{2}$+(2+$\sqrt{2}$)
=5.

點(diǎn)評 本題考查了根式的化簡與運(yùn)算問題,也考查了分母有理化的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若對任意a>0,b∈R,存在x∈[1,2],使得|${\frac{2}{x}$-ax+b|≥M成立,則實(shí)數(shù)M的最大值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.執(zhí)行如圖的程序框圖,輸出S的值是(  )
A.2B.1C.$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.下列集合中,A={x=2,y=1},B={2,1},C={(x,y)|(x-2)2+|y-1|=0},D=(x,y)|$\left\{\begin{array}{l}{x+y=3}\\{x-y=1}\end{array}\right.$},E={(x,y)|x=2且y=1},F(xiàn)={(x,y)|x=2或y=1},其中與集合{(2,1)}相等的集合共有3個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知cos($\frac{π}{4}$-α)=$\frac{12}{13}$,α∈(0,$\frac{π}{4}$),則$\frac{cos2α}{{sin(\frac{π}{4}+α)}}$=( 。
A.$\frac{10}{13}$B.-$\frac{5}{13}$C.$\frac{5}{13}$D.$\frac{12}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=(ex-1)(x-1)k,e為自然對數(shù)的底數(shù)
(Ⅰ)當(dāng)k=1時,求函數(shù)y=f(x)在點(diǎn)(1,f(1))處的切線方程y=g(x),并證明f(x)≥g(x)恒成立;
(Ⅱ)當(dāng)k=2時,設(shè)三角形A,B,C是函數(shù)y=f(x),x∈(2,+∞)圖象上三個不同的點(diǎn),求證:△ABC是鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在△ABC中,已知點(diǎn)D在BC邊上,$\overrightarrow{AD}$•$\overrightarrow{AC}$=0,sin∠BAD=$\frac{1}{3}$,sin∠ABD=$\frac{\sqrt{3}}{3}$,BD=1.
(Ⅰ)求AD的長;
(Ⅱ)求△ADC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.計算:
(1)$\frac{1}{1×3}$+$\frac{1}{2×4}$+$\frac{1}{3×5}$+…+$\frac{1}{9×11}$;
(2)$\frac{1}{1×2×3}$+$\frac{1}{2×3×4}$+…+$\frac{1}{98×99×100}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知不等式組為$\left\{\begin{array}{l}{y≥0}\\{y≥x}\\{y≤2-x}\end{array}\right.$,問:
(Ⅰ)點(diǎn)(x,y)滿足不等式,求:
(1)z=3x+2y的最大值;
(2)z=|4x+3y+1|的最大值;
(3)z=(x+1)2+(y+1)2的最大值;
(4)z=$\frac{2y}{3x+9}$的最大值;
(5)z=$\frac{{x}^{2}-{y}^{2}}{xy}$的最小值;
(6)z=x-y+|x+2y+3|的最大值.
(Ⅱ)點(diǎn)(a+b,a-b)滿足不等式,求2a+b的最大值.

查看答案和解析>>

同步練習(xí)冊答案