13.已知銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若ccosA,bcosB,acosC成等差數(shù)列.
(Ⅰ)求角B的值;
(Ⅱ)設(shè)函數(shù)f(x)=$\sqrt{3}$sinxcosx-$\frac{1}{2}$cos2x,求f(A)的取值范圍.

分析 (Ⅰ)由等差數(shù)列及正弦定理,得到B
(Ⅱ)化簡f(x),由B的值,得到A的取值范圍,由此得到f(A)的范圍.

解答 解:(I)∵ccosA,bcosB,acosC成等差數(shù)列,
∴2bcosB=ccosA+acosC.
在△ABC中,由正弦定理a=2RsinA,b=2RsinB,c=2RsinC,R為△ABC外接圓的半徑,
可得:2sinBcosB=sinCcosA+sinAcosC,
∴2sinBcosB=sin(A+C),
又A+C=π-B,
∴2sinBcosB=sin(π-B)=sinB,
∵$0<B<\frac{π}{2}$,∴sinB≠0,
∴$cosB=\frac{1}{2}$,∴$B=\frac{π}{3}$.
( II)$f(x)=\sqrt{3}sinxcosx-\frac{1}{2}cos2x=\frac{{\sqrt{3}}}{2}sin2x-\frac{1}{2}cos2x$
=$sin(2x-\frac{π}{6})$.
∴$f(A)=sin(2A-\frac{π}{6})$,∵$B=\frac{π}{3}$,
∴$C=\frac{2π}{3}-A$,又$0<A<\frac{π}{2},0<C<\frac{π}{2}$,
∴$0<\frac{2π}{3}-A<\frac{π}{2}$,∴$\frac{π}{6}<A<\frac{π}{2}$,
∴$\frac{π}{6}<2A-\frac{π}{6}<\frac{5π}{6}$,
∴$\frac{1}{2}<sin(2A-\frac{π}{6})≤1$,
故f(A)的取值范圍為$(\frac{1}{2},1]$.

點評 本題考查由等差數(shù)列及正弦定理、三角函數(shù)化簡.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.△ABC滿足:AB=4,AC=2,A=$\frac{π}{3}$,已知AD垂直BC于點D,E,F(xiàn)為AB,AC中點,則$\overrightarrow{DE}$•$\overrightarrow{DF}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知一元二次不等式f(x)>0的解集為(-∞,1)∪(2,+∞),則f(lgx)<0的解集為(10,100).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.定義運算$|{\begin{array}{l}{a}&b\\{c}&d\end{array}}|$=ad-bc,若z=$|{\begin{array}{l}{1}&2\\{i}&{i^2}\end{array}}|$,則復(fù)數(shù)$\overline z$對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.{an}為等差數(shù)列,前n項和為Sn,若S11=66,則4a3+3a6+2a12=( 。
A.27B.54C.99D.108

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{{e}^{2x}-1}{x}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若任意x∈(0,1),f(x)∈(a,b)恒成立,求b-a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=lnx+ax2+bx.(a,b∈R).
(1)曲線y=f(x)上一點A(1,2),若在點A處的切線與直線2x-y-10=0平行,求a,b的值;
(2)設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù)為y=f′(x),若f′(2)=$\frac{1}{2}$,且函數(shù)y=f(x)在(0,+∞)是單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.過拋物線y2=8x的焦點作一條直線與拋物線相交于A、B兩點,且這兩點的橫坐標(biāo)之和為9,則滿足條件的直線(  )
A.有且只有一條B.有兩條C.有無窮多條D.必不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{5}{6}$B.$\frac{10}{3}$C.$\frac{7}{3}$D.$\frac{17}{6}$

查看答案和解析>>

同步練習(xí)冊答案