6.集合A={x|x-4≥0},B={x|y=log2(x-2)≤2},則(∁RA)∩B=(  )
A.{x|2<x≤4}B.{x|2<x<4}C.{x|2≤x<4}D.{x|2≤x≤4}

分析 分別求出A與B中不等式的解集確定出A與B,找出A補(bǔ)集與B的交集即可.

解答 解:由A中不等式解得:x≥4,即A={x|x≥4},
∴∁RA={x|x<4},
由B中不等式變形得:log2(x-2)≤2=log24,即0<x-2<4,
解得:2<x<6,即B={x|2<x<6},
則(∁RA)∩B={x|2<x<4},
故選:B.

點(diǎn)評(píng) 此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=$\sqrt{sinx}$+$\sqrt{tanx}$的定義域?yàn)閧x|2kπ≤x<2kπ+$\frac{π}{2}$或x=(2k+1)π,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某市2013年發(fā)放汽車牌照12萬張,其中燃油型汽車牌照10萬張,電動(dòng)型汽車2萬張.為了節(jié)能減排和控制總量,從2013年開始,每年電動(dòng)型汽車牌照按50%增長,而燃油型汽車牌照每一年比上一年減少0.5萬張,一旦某年發(fā)放的燃油型汽車牌照數(shù)為0萬張,以后每一年發(fā)放的燃油型的牌照的數(shù)量維持在這一年的水平不變.同時(shí)規(guī)定一旦某年發(fā)放的牌照超過15萬張,以后每一年發(fā)放的電動(dòng)車的牌照的數(shù)量維持在這一年的水平不變.
(1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)構(gòu)成數(shù)列{an},每年發(fā)放的電動(dòng)型汽車牌照數(shù)為構(gòu)成數(shù)列{bn},寫出這兩個(gè)數(shù)列的通項(xiàng)公式;
(2)從2013年算起,求到2029年(包含2029年)累計(jì)各年發(fā)放的牌照數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若x,y滿足約束條件$\left\{\begin{array}{l}{2x+y-2≤0}\\{3x-y-3≤0}\\{x≥0}\end{array}\right.$,則z=x-y的最小值為( 。
A.-3B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)f(x)為奇函數(shù),且在(-∞,0)上遞減,f(-2)=0,則xf(x)<0的解集為(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知圓C的方程為(x-3)2+y2=4,定點(diǎn)A(-3,0),求過定點(diǎn)A且和圓C外切的動(dòng)圓圓心P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=(x-x1)(x-x2)(x-x3)(其中x1<x2<x3),g(x)=3x+sin(2x+1),且函數(shù)f(x)的兩個(gè)極值點(diǎn)為α,β(α<β).設(shè)λ=$\frac{{x}_{1}+{x}_{2}}{2}$,μ=$\frac{{x}_{2}+{x}_{3}}{2}$,則( 。
A.g(a)<g(λ)<g(β)<g(μ)B.g(λ)<g(a)<g(β)<g(μ)C.g(λ)<g(a)<g(μ)<g(β)D.g(a)<g(λ)<g(μ)<g(β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.觀察下列數(shù)的特點(diǎn)1,2,2,3,3,3,4,4,4,4,…中,第90項(xiàng)是( 。
A.12B.13C.14D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知扇形的面積為4,圓心角為2弧度,則該扇形的弧長為4.

查看答案和解析>>

同步練習(xí)冊(cè)答案