2.函數(shù)y=$\frac{3x}{x-1}$的值域為{y|y≠3}.

分析 分離常數(shù)得到$y=3+\frac{3}{x-1}$,從而可根據(jù)$\frac{3}{x-1}≠0$得出y的范圍,即得出原函數(shù)的值域.

解答 解:$y=\frac{3(x-1)+3}{x-1}=3+\frac{3}{x-1}$;
∵$\frac{3}{x-1}≠0$;
∴y≠3;
∴該函數(shù)值域為{y|y≠3}.
故答案為:{y|y≠3}.

點評 考查函數(shù)值域的概念及求法,分離常數(shù)法的運(yùn)用,以及反比例函數(shù)的值域.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知f(x)是定義在R上的奇函數(shù),滿足f(-$\frac{3}{2}$+x)=f($\frac{3}{2}$+x),當(dāng)x∈[0,$\frac{3}{2}$]時,f(x)=ln(x2-x+1),則函數(shù)f(x)在區(qū)間[0,6]上的零點個數(shù)是( 。
A.3B.5C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右頂點分別為A1、A2,上、下頂點分別為B2、B1,四邊形A1B1A2B2的面積為4$\sqrt{3}$,且該四邊形內(nèi)切圓的方程為x2+y2=$\frac{12}{7}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線l:y=kx+m(k,m均為常數(shù))與橢圓C相交于M,N兩個不同的點(M,N異于A1,A2),若以MN為直徑的圓過橢圓C的右頂點A2,試判斷直線l能否過定點?若能,求出該定點坐標(biāo);若不能,也請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$=(1,-1),|$\overrightarrow$|=1,且$\overrightarrow$⊥($\overrightarrow{a}$+$\overrightarrow$),則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某學(xué)校有若干學(xué)生社團(tuán),其中“文學(xué)社”、“圍棋社”、“書法社”的人數(shù)分別為9、18、27.現(xiàn)采用分層抽樣的方法從這三個社團(tuán)中抽取6人外出參加活動.
(1)求應(yīng)從這三個社團(tuán)中分別抽取的人數(shù);
(2)將抽取的6人進(jìn)行編號,編號分別為A1,A2,A3,A4,A5,A6,現(xiàn)從這6人中隨機(jī)地抽出2人組成活動小組.
①用所給編號列出所有可能的結(jié)果;
②設(shè)A為事件“編號為A1和A2的2人中恰有1人被抽到”,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.高三年級有500名學(xué)生,為了了解數(shù)學(xué)學(xué)科的學(xué)習(xí)情況,現(xiàn)從中隨機(jī)抽出若干名學(xué)生在一次測試中的數(shù)學(xué)成績,制成如下頻率分布表:
分組頻數(shù)頻率
[85,95)
[95,105)0.050
[105,115)0.200
[115,125)120.300
[125,135)0.275
[135,145)4
[145,155]0.050
合計
(1)表格中①②③④處的數(shù)值分別為1、0.025、0.100、1.000;
(2)在圖中畫出[85,155]的頻率分布直方圖;
(3)根據(jù)題干信息估計總體平均數(shù),并估計總體落在[125,155]上的頻率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.已知2a=b+c,sin2A=sinBsinC.試判斷三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=ln(1+x)-\frac{x}{{{{(1+x)}^a}}}$,實數(shù)a>0.
(Ⅰ)若a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若x>0時,不等式f(x)<0恒成立,求實數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.復(fù)平面上平行四邊形ABCD的四個頂點中,A、B、C所對應(yīng)的復(fù)數(shù)分別為2-3i、-2-3i、-3+2i,則D點對應(yīng)的復(fù)數(shù)是( 。
A.1+2iB.1-2iC.2-iD.2+i

查看答案和解析>>

同步練習(xí)冊答案