19.某大學(xué)餐飲中心為了解新生的飲食習(xí)慣,在全校一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如表所示:
喜歡甜品不喜歡甜品合計(jì)
南方學(xué)生602080
北方學(xué)生101020
合計(jì)7030100
(Ⅰ)根據(jù)表中數(shù)據(jù),問(wèn)是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
(Ⅱ)已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取2人,求至多有1人喜歡甜品的概率.
P(χ2≥x00.1000.0500.010
x02.7063.8416.635
附:x2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

分析 (Ⅰ)由題意結(jié)合列聯(lián)表計(jì)算X2的值,結(jié)合獨(dú)立性檢驗(yàn)的思想即可給定結(jié)論;
(Ⅱ)利用題意列出所有可能的事件,結(jié)合古典概型計(jì)算公式即可求得最終結(jié)果.

解答 解:(Ⅰ)將2×2列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算,得${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{100×(60×10-20×10)2}{70×30×80×20}$=$\frac{100}{21}$≈4.762
由于P(Χ2≥3.841)=0.050,4.762>3.841,
所以有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”.
(Ⅱ)設(shè)喜歡甜品的為A,B,不喜歡甜品的為c,d和e.
則從5名學(xué)生中隨機(jī)抽取2名共有以下10個(gè)基本事件:(A,B),(A,c),(A,d),(A,e),(B,c),(B,d),(B,e),(c,d),(c,e),(d,e). …(9分)
至多有1人喜歡甜品的基本事件有9個(gè),分別為:(A,c),(A,d),(A,e),(B,c),(B,d),(B,e),(c,d),(c,e),(d,e).故至多有1人喜歡甜品的概率$P=\frac{9}{10}$.

點(diǎn)評(píng) 本題考查了獨(dú)立性檢驗(yàn)的思想,古典概型計(jì)算公式等,重點(diǎn)考查學(xué)生對(duì)基礎(chǔ)概念的理解和計(jì)算能力,屬于中等題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)數(shù)列{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,其前n項(xiàng)和為Sn,且a1a5=64,S5-S3=48.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)有正整數(shù)m,l(5<m<l),使得am,5a5,al成等差數(shù)列,求m,l的值;
(3)設(shè)k,m,l∈N*,k<m<1,對(duì)于給定的k,求三個(gè)數(shù) 5ak,am,al經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知向量$\overrightarrow{a}$=(2,0),$\overrightarrow$=(x,-2x),當(dāng)|$\overrightarrow{a}$-$\overrightarrow$|取得最小值時(shí),x=$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)f(x)是定義在R上的函數(shù),對(duì)任意x,y∈R,恒有f(x+y)=f(x)+f(y)
(1)求f(0)的值;
(2)求證:f(x)為奇函數(shù);
(3)若函數(shù)f(x)是R上的單調(diào)遞增的,已知f(1)=1,且f(2a)>f(a-1)+2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若$tan(α+\frac{π}{4})=5$,則$\frac{1}{sinαcosα}$=$\frac{13}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.復(fù)數(shù)z滿足z(1+i)=3-i,則復(fù)數(shù)z是(  )
A.2+iB.2-iC.1-2iD.1+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)函數(shù)f(x)=ka-x(k∈R,a>1)的圖象過(guò)點(diǎn)A(0,8),B(3,1),則logak的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知全集U=R,集合A={x|1<x<3},B={x|x≥2}.
(1)求A∩B;
(2)若集合C={x|x>a},且滿足B∪C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)隨機(jī)變量ξ~B(2,p),若P(ξ≥1)=$\frac{5}{9}$,則p的值為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{16}{27}$

查看答案和解析>>

同步練習(xí)冊(cè)答案