【題目】已知圓過兩點, ,且圓心在直線

(Ⅰ)求圓的標(biāo)準(zhǔn)方程;

(Ⅱ)直線過點且與圓有兩個不同的交點 ,若直線的斜率大于0,求的取值范圍;

(Ⅲ)在(Ⅱ)的條件下,是否存在直線使得弦的垂直平分線過點,若存在,求出直線的方程;若不存在,請說明理由.

【答案】x12+y2=25;(Ⅱ ;(Ⅲx+2y1=0.

【解析】試題分析:(Ⅰ)圓心C是MN的垂直平分線與直線2x-y-2=0的交點,CM長為半徑,進(jìn)而可得圓的方程;
(Ⅱ)直線l過點(-2,5)且與圓C有兩個不同的交點,則C到l的距離小于半徑,進(jìn)而得到k的取值范圍;
(Ⅲ)求出AB的垂直平分線方程,將圓心坐標(biāo)代入求出斜率,進(jìn)而可得答案.

試題解析:

(I)MN的垂直平分線方程為:x﹣2y﹣1=02x﹣y﹣2=0聯(lián)立解得圓心坐標(biāo)為C(1,0)

R2=|CM|2=(﹣3﹣1)2+(3﹣0)2=25

∴圓C的標(biāo)準(zhǔn)方程為:(x﹣1)2+y2=25

II)設(shè)直線的方程為:y5=kx+2)即kxy+2k+5=0,設(shè)C到直線l的距離為d,

d=

由題意:d<5 即:8k2﹣15k>0

∴k<0k>

又因為k>0

∴k的取值范圍是(,+∞)

III設(shè)符合條件的直線存在,則AB的垂直平分線方程為:y+1=x3)即:x+ky+k3=0

∵弦的垂直平分線過圓心(1,0)∴k﹣2=0 k=2

∵k=2>

故符合條件的直線存在,l的方程:x+2y﹣1=0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4 坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓,曲線的參數(shù)方程為為參數(shù)),并以為極點, 軸正半軸為極軸建立極坐標(biāo)系.

(1)寫出的極坐標(biāo)方程,并將化為普通方程;

(2)若直線的極坐標(biāo)方程為相交于兩點,

的面積(為圓的圓心).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)校體育節(jié)中,某班全體40名同學(xué)參加跳繩、踢毽子兩項比賽的人數(shù)統(tǒng)計如下:

參加跳繩的同學(xué)

未參加跳繩的同學(xué)

參加踢毽的同學(xué)

9

4

未參加踢毽的同學(xué)

7

20

(1)從該班隨機選1名同學(xué),求該同學(xué)至少參加上述一項活動的概率;

(2)已知既參加跳繩又參加踢毽的9名同學(xué)中,有男生5名,女生4名,現(xiàn)從這5名男生,4名女生中各隨機挑選1人,求男同學(xué)甲未被選中且女同學(xué)乙被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點為圓, 是圓上的動點,線段的垂直平分線交于點.

(1)求點的軌跡的方程;

2)設(shè), 過點的直線與曲線交于點(異于點),過點的直線與曲線交于點,直線傾斜角互補.

①直線的斜率是否為定值?若是,求出該定值;若不是,說明理由;

②設(shè)的面積之和為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中,滿足前n項和.

(I)證明: ;

(Ⅱ)證明:

(Ⅲ)證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}的前n項和Sn , 若a3+a7﹣a10=8,a11﹣a4=4,則S13等于(
A.152
B.154
C.156
D.158

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)的最小正周期和單調(diào)遞增區(qū)間;

(2)已知三邊長,且的面積.求角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A,B分別在射線CM,CN(不含端點C)上運動,∠MCN= ,在△ABC中,角A,B,C所對的邊分別是a,b,c
(1)若a,b,c依次成等差數(shù)列,且公差為2,求c的值:
(2)若c= ,∠ABC=θ,試用θ表示△ABC的周長,并求周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、分別是橢圓的左頂點、右焦點,點為橢圓上一動點,當(dāng)軸時, .

(1)求橢圓的離心率;

(2)若橢圓存在點,使得四邊形是平行四邊形(點在第一象限),求直線的斜率之積;

(3)記圓為橢圓的“關(guān)聯(lián)圓”. 若,過點作橢圓的“關(guān)聯(lián)圓”的兩條切線,切點為,直線的橫、縱截距分別為,求證: 為定值.

查看答案和解析>>

同步練習(xí)冊答案