7.已知隨機(jī)變量ξ服從正態(tài)分布N(0,σ2),若P(ξ>1)=0.02,則P(-1≤ξ≤1)=( 。
A.0.04B.0.64C.0.86D.0.96

分析 根據(jù)隨機(jī)變量ξ服從正態(tài)分布N(0,σ2),得到正態(tài)曲線關(guān)于x=0對(duì)稱,根據(jù)P(ξ>1)=0.02,得到對(duì)稱區(qū)間上的概率,從而可求P(-1≤ξ≤1).

解答 解:由隨機(jī)變量ξ服從正態(tài)分布N(0,σ2)可知正態(tài)密度曲線關(guān)于y軸對(duì)稱,
而P(ξ>1)=0.02,
則P(ξ<-1)=0.02,
故P(-1≤ξ≤1)=1-P(ξ>1)-P(ξ<-1)=0.96,
故選:D.

點(diǎn)評(píng) 本題主要考查正態(tài)分布的概率求法,結(jié)合正態(tài)曲線,加深對(duì)正態(tài)密度函數(shù)的理解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若對(duì)任意m∈(-2,-1),f(x)=mx2-(5m+n)x+n在x∈(3,5)上存在零點(diǎn),則實(shí)數(shù)n的取值范圍是0<n≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.計(jì)算($\frac{1}{4}$)${\;}^{\frac{1}{2}}$•$\frac{({\sqrt{4a^{-1}})}^{3}}{0.{1}^{-2}(a{{\;}^{3}b}^{-3})^{\frac{1}{2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知α、β為銳角,若sinα=$\frac{{2\sqrt{5}}}{5}$,sin(α+β)=$\frac{3}{5}$,則cos2β的值為(  )
A.$-\frac{117}{125}$B.$\frac{3}{5}$C.$-\frac{117}{125}$或$\frac{3}{5}$D.$\frac{117}{125}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,A、B、C、D、E在圓周上,且 A B∥C E,A E∥BD,BD交C E于點(diǎn)F,過 A點(diǎn)的圓的切線交C E的延長(zhǎng)線于 P,若 PE=CF=1,P A=2.
(1)求 A E的長(zhǎng);
(2)求證:點(diǎn)F是 BD的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知A={(x,y)|x+y≤8,x≥0,y≥0},B={(x,y)|x≤2,3x-y≥0},若向區(qū)域A隨機(jī)投一點(diǎn)P,則點(diǎn)P落入?yún)^(qū)域B的概率為$\frac{3}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知數(shù)列{an}的前n項(xiàng)和Sn=n2-9n(n∈N*),則a9的值為( 。
A.9B.8C.7D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知集合A={x|x2-1≥0},B={x||x|=1},則A∩B=( 。
A.{x|x≥1或x≤-1}B.{x|-1≤x≤1}C.{-1,1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知集合A={x|y=$\sqrt{4-{x}^{2}}$},函數(shù)f(x)滿足:①函數(shù)f(x)的定義域?yàn)锳;②函數(shù)f(x)的圖象關(guān)于原點(diǎn)對(duì)稱;③當(dāng)x∈[-2,0)時(shí),f(x)=-($\frac{1}{2}$)x+1,函數(shù)g(x)=x2-mx+n(m,n∈R)的圖象在(1,g(1))處的切線垂直于y軸,若?x1∈A,?x2∈A,使得f(x1)-g(x2)=0,則n的取值范圍為[-5,-2].

查看答案和解析>>

同步練習(xí)冊(cè)答案