【題目】在平面直角坐標(biāo)系xOy中,已知曲線C1:, 曲線C2:,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系. 并在兩種坐標(biāo)系中取相同的單位長度。
(1)寫出曲線C1,C2的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,已知點(diǎn)A是射線l:與C1的交點(diǎn),點(diǎn)B是l與C2的異于極點(diǎn)的交點(diǎn),當(dāng)在區(qū)間上變化時(shí),求的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面給出的命題中:
(1)“雙曲線的方程為”是“雙曲線的漸近線為”的充分不必要條件;
(2)“”是“直線與直線互相垂直”的必要不充分條件;
(3)已知隨機(jī)變量服從正態(tài)分布,且,則;
(4)已知圓,圓,則這兩個(gè)圓有3條公切線.
其中真命題的個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線和將圓分成4部分,用5種不同顏色給四部分染色,每部分染一種顏色,相鄰部分不能染同一種顏色,則不同的染色方案有
A 120種 B 240種 C 260種 D 280種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京時(shí)間3月15日下午,谷歌圍棋人工智能與韓國棋手李世石進(jìn)行最后一輪較量,獲得本場比賽勝利,最終人機(jī)大戰(zhàn)總比分定格1:4.人機(jī)大戰(zhàn)也引發(fā)全民對圍棋的關(guān)注,某學(xué)校社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時(shí)間不低于40分鐘的學(xué)生稱為“圍棋迷”.
(Ⅰ)根據(jù)已知條件完成列聯(lián)表,并據(jù)此資料你是否有的把握認(rèn)為“圍棋迷”與性別有關(guān)?
非圍棋迷 | 圍棋迷 | 合計(jì) | |
男 | |||
女 | 10 | 55 | |
合計(jì) |
(Ⅱ)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機(jī)抽樣方法每次抽取1名學(xué)生,抽取3次,記被抽取的3名淡定生中的“圍棋迷”人數(shù)為X。若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望 E(X) 和方差 D(X) .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為2的正方形,,分別為,的中點(diǎn),平面平面,且.
(1)求證:平面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面幾何中,可以得出正確結(jié)論:“正三角形的內(nèi)切圓半徑等于這個(gè)正三角形的高的.”拓展到空間中,類比平面幾何的上述結(jié)論,則正四面體的內(nèi)切球半徑等于這個(gè)正四面體的高的( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinxcosx﹣ x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)當(dāng)x∈[0, ]時(shí),求f(x)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)絡(luò)時(shí)代的進(jìn)步,流量成為手機(jī)的附帶品,人們可以利用手機(jī)隨時(shí)隨地的瀏覽網(wǎng)頁,聊天,看視頻,因此,社會(huì)上產(chǎn)生了很多低頭族.某研究人員對該地區(qū)18∽50歲的5000名居民在月流量的使用情況上做出調(diào)查,所得結(jié)果統(tǒng)計(jì)如下圖所示:
(Ⅰ)以頻率估計(jì)概率,若在該地區(qū)任取3位居民,其中恰有位居民的月流量的使用情況
在300M∽400M之間,求的期望;
(Ⅱ)求被抽查的居民使用流量的平均值;
(Ⅲ)經(jīng)過數(shù)據(jù)分析,在一定的范圍內(nèi),流量套餐的打折情況與其日銷售份數(shù)成線性相關(guān)
關(guān)系,該研究人員將流量套餐的打折情況與其日銷售份數(shù)的結(jié)果統(tǒng)計(jì)如下表所示:
折扣 | 1折 | 2折 | 3折 | 4折 | 5折 |
銷售份數(shù) | 50 | 85 | 115 | 140 | 160 |
試建立關(guān)于的的回歸方程.
附注:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:
,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com