13.已知不等式ax2+bx+1>0的解集為{x|-$\frac{1}{2}$<x<$\frac{1}{3}$},解不等式x2+bx+a>0.

分析 根據(jù)不等式ax2+bx+1>0的解集求出a、b的值,再求不等式x2+bx+a>0的解集即可.

解答 解:∵不等式ax2+bx+1>0的解集為{x|-$\frac{1}{2}$<x<$\frac{1}{3}$},
∴-$\frac{1}{2}$,$\frac{1}{3}$是一元二次方程ax2+bx+1=0的兩個(gè)實(shí)數(shù)根,且a<0,
∴$\left\{\begin{array}{l}{-\frac{1}{2}+\frac{1}{3}=-\frac{a}}\\{-\frac{1}{2}×\frac{1}{3}=\frac{1}{a}}\end{array}\right.$,
解得a=-6,b=-1;
則不等式x2+bx+a>0化為x2-x-6>0,
解得x<-2或x>3;
∴不等式x2+bx+a>0的解集為{x|x<-2或x>3}.

點(diǎn)評(píng) 本題考查了一元二次不等式的解法、一元二次方程的根與系數(shù)的關(guān)系的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.做一個(gè)圓柱形鍋爐,容積為8π,兩個(gè)底面的材料每單位面積的價(jià)格為2元,側(cè)面的材料每單位面積的價(jià)格為4元,當(dāng)造價(jià)最低時(shí),鍋爐的底面半徑為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知定義在R內(nèi)的奇函數(shù)f(x)滿(mǎn)足:對(duì)任意x∈R郡有f(x+1)=f(3-x),若f(1)=-2,則2016f(2016)-2015f(2015)=( 。
A.-2015B.2015C.-4030D.4030

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知實(shí)數(shù)x,y滿(mǎn)足$\left\{\begin{array}{l}{x+y-4≤0}\\{y-1≥0}\\{x-1≥0}\end{array}\right.$,則z=$\frac{{y}^{2}}{x}$的最大值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=sinx+λcosx(λ∈R)的圖象關(guān)于直線x=-$\frac{π}{4}$對(duì)稱(chēng),把函數(shù)f(x)的圖象上,每個(gè)點(diǎn)的橫坐標(biāo)擴(kuò)大到原來(lái)的2倍,縱坐標(biāo)不變,再將所得函數(shù)圖象向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的一個(gè)對(duì)稱(chēng)中心是(  )
A.($\frac{π}{6}$,0)B.($\frac{π}{4}$,0)C.($\frac{2π}{3}$,0)D.($\frac{5π}{6}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.直線y=m與曲線y=cosx(x∈(0,2π))的圖象有兩個(gè)交點(diǎn)(x1,m)和(x2,m),則m的取值范圍是(-1,1);x1+x2=2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若α∈($\frac{π}{4}$,$\frac{π}{2}$),則sinα,cosα,tanα的大小關(guān)系是( 。
A.sinα>cosα>tanαB.tanα>cosα>sinαC.cosα>tanα>sinαD.tanα>sinα>cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知集合P={(x,y)|$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)},Q={(x,y)|$\frac{x}{a}$+$\frac{y}$>m(a>b>0,m>0)},若?M∈P,M∉Q,則實(shí)數(shù)m的取值范圍是( 。
A.[$\sqrt{2}$,+∞)B.[2$\sqrt{2}$,+∞)C.[$\frac{\sqrt{6}}{6}$,+∞)D.(-∞,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.雙曲線3x2-y2=75上一點(diǎn)P到它的一個(gè)焦點(diǎn)的距離等于12,那么點(diǎn)P到它的另一個(gè)焦點(diǎn)的距離等于22.

查看答案和解析>>

同步練習(xí)冊(cè)答案