18.直線y=m與曲線y=cosx(x∈(0,2π))的圖象有兩個交點(diǎn)(x1,m)和(x2,m),則m的取值范圍是(-1,1);x1+x2=2π.

分析 作出函數(shù)直線y=m與曲線y=cosx(x∈(0,2π))的圖象如圖,利用數(shù)形結(jié)合結(jié)合三角函數(shù)的有界性和對稱性進(jìn)行求解即可.

解答 解:作出函數(shù)直線y=m與曲線y=cosx(x∈(0,2π))的圖象如圖,
若兩個圖象有兩個交點(diǎn),
則-1<m<1,
兩個交點(diǎn)(x1,m)和(x2,m),關(guān)于x=π對稱,
則$\frac{{x}_{1}+{x}_{2}}{2}=π$,
即x1+x2=2π,
故答案為:(-1,1),2π.

點(diǎn)評 本題主要考查三角函數(shù)圖象和性質(zhì),作出兩個函數(shù)的圖象,利用數(shù)形結(jié)合是解決本題的關(guān)鍵,重點(diǎn)考察三角函數(shù)的對稱性的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在平面直角坐標(biāo)系中,過原點(diǎn)O的直線l與曲線y=ex-2交于不同的兩點(diǎn)A、B,分別過A、B作x軸的垂線,與曲線y=lnx交于點(diǎn)C、D,則直線CD的斜率為( 。
A.3B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等差數(shù)列{an}的第1項(xiàng)、第2項(xiàng)和 第7項(xiàng)恰好成等比數(shù)列,且這3項(xiàng)的和為93,求等差數(shù)列{an}的首項(xiàng)和公差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)x、y滿足約束條件$\left\{\begin{array}{l}{x-\frac{1}{2}y≤1}\\{x-2y+2≥0}\\{x+y≥2}\end{array}\right.$,若有無窮多個實(shí)數(shù)對(x,y),使得目標(biāo)函數(shù)z=mx+y取得最大值,則實(shí)數(shù)m的值是( 。
A.-$\frac{3}{4}$B.-$\frac{1}{2}$C.-$\frac{2}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知不等式ax2+bx+1>0的解集為{x|-$\frac{1}{2}$<x<$\frac{1}{3}$},解不等式x2+bx+a>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=(-$\sqrt{3}$,x),且$\overrightarrow{a}$與$\overrightarrow$夾角為60°,則x=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=|ex+$\frac{a}{{e}^{x}}$|在[0,1]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是(-∞,-e2]∪[e2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.(cos75°+sin75°)2=(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知點(diǎn)F1、F2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左,右焦點(diǎn),過點(diǎn)F1的直線l與雙曲線C的左,右兩支分別交于P,Q兩點(diǎn),若△PQF2是以∠PQF2為為直角的等腰直角三角形,e為雙曲線C的離心率,則e2=5+2$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案