4.已知定義在R內(nèi)的奇函數(shù)f(x)滿足:對(duì)任意x∈R郡有f(x+1)=f(3-x),若f(1)=-2,則2016f(2016)-2015f(2015)=( 。
A.-2015B.2015C.-4030D.4030

分析 根據(jù)函數(shù)的奇偶性和對(duì)稱的關(guān)系求出函數(shù)的周期是8,利用函數(shù)奇偶性和周期性將函數(shù)進(jìn)行轉(zhuǎn)化求解即可.

解答 解:定義在R內(nèi)的奇函數(shù)f(x)滿足:對(duì)任意x∈R郡有f(x+1)=f(3-x),
則f(x+1)=f(3-x)=-f(x-3),
則f(x+4)=-f(x),
即f(x+8)=-f(x+4)=f(x),
即函數(shù)f(x)是周期為8的周期函數(shù),
則f(2016)=f(252×8)=f(0)=0,
f(2015)=f(252×8-1)=f(-1)=-f(1)=2,
故2016f(2016)-2015f(2015)=0-2015×2=-4030,
故選:C.

點(diǎn)評(píng) 本題主要考查函數(shù)值的計(jì)算,根據(jù)條件得到函數(shù)的周期性以及利用周期性和奇偶性的關(guān)系進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)y=|-x2+2x+3|在區(qū)間[0,4]上的最大值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,三棱柱ABC-A1B1C1中,D、M分別為CC1和A1B的中點(diǎn),A1D⊥CC1,△AA1B是邊長(zhǎng)為2的正三角形,A1D=2,BC=1.
(1)證明:MD∥平面ABC;
(2)證明:BC⊥平面ABB1A1
(3)求二面角B-AC-A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若函數(shù)f(x)=b+lg($\sqrt{{x}^{2}+1}$-ax)是定義在R上的奇函數(shù),則a+b=( 。
A.-1B.0C.-1或1D.0或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.雙曲線x2-$\frac{{y}^{2}}{3}$=1的左右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F2作傾斜角為150°的直線交雙曲線于A、B兩點(diǎn),則△F1AB的周長(zhǎng)是3+3$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知等差數(shù)列{an}的第1項(xiàng)、第2項(xiàng)和 第7項(xiàng)恰好成等比數(shù)列,且這3項(xiàng)的和為93,求等差數(shù)列{an}的首項(xiàng)和公差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若sinα=$\frac{1}{\sqrt{5}}$,sinβ=$\frac{1}{\sqrt{10}}$,且α、β∈(0,$\frac{π}{2}$),則α+β是(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{4}$或$\frac{3π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知不等式ax2+bx+1>0的解集為{x|-$\frac{1}{2}$<x<$\frac{1}{3}$},解不等式x2+bx+a>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列式子正確的是( 。
A.cos(-$\frac{π}{10}$)<cos(-$\frac{π}{9}$)B.tan$\frac{π}{6}$<tan$\frac{2}{7}$πC.sin$\frac{8}{7}$π>sin$\frac{π}{11}$D.cos$\frac{2}{5}$π<cos$\frac{6}{5}$π

查看答案和解析>>

同步練習(xí)冊(cè)答案