已知,α∈(-π,0),則cos2α=( )
A.
B.
C.
D.
【答案】分析:先利用tanα的值和α的范圍,利用同角三角函數(shù)的基本關(guān)系求得sinα,然后利用二倍角的余弦求得cos2α的值.
解答:解:∵<0,α∈(-π,0),
∴α∈(-,0),
∴sinα=-=-
∴cos2α=1-2sin2α=1-=
故選D
點(diǎn)評(píng):本題主要考查了二倍角公式的化簡(jiǎn)求值和同角三角函數(shù)的基本關(guān)系的應(yīng)用.解題的過程注意三角函數(shù)正負(fù)號(hào)的判定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(2,0)關(guān)于直線l1:x+y-4=0的對(duì)稱點(diǎn)為A′,圓C:(x-m)2+(y-n)2=4(n>0)經(jīng)過點(diǎn)A和A′,且與過點(diǎn)B(0,-2
2
)
的直線l2相切,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面內(nèi)兩定點(diǎn)F1(0,-
5
)、F2(0,
5
)
,動(dòng)點(diǎn)P滿足條件:|
PF1
|-|
PF2
|=4
,設(shè)點(diǎn)P的軌跡是曲線E,O為坐標(biāo)原點(diǎn).
(I)求曲線E的方程;
(II)若直線y=k(x+1)與曲線E相交于兩不同點(diǎn)Q、R,求
OQ
OR
的取值范圍;
(III)(文科做)設(shè)A、B兩點(diǎn)分別在直線y=±2x上,若
AP
PB
(λ∈[
1
2
,3])
,記xA、xB分別為A、B兩點(diǎn)的橫坐標(biāo),求|xA•xB|的最小值.
(理科做)設(shè)A、B兩點(diǎn)分別在直線y=±2x上,若
AP
PB
(λ∈[
1
2
,3])
,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式x2+bx+c>0的解集是{x|x<-1或x>2},則b+c=
-3
-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(3λ+1,0,2λ),
b
=(1,λ-1,λ)若
a
b
,則λ的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式x2+ax+4<0的解集為空集,則a的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案