若log4(x+2y)+log4(x-2y)=1,則|x|-|y|的最小值是( 。
A、1
B、
2
C、
3
D、2
考點:函數(shù)的最值及其幾何意義
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由函數(shù)的圖象的對稱性知,只考慮y≥0的情況即可,因為x>0,所以只須求x-y的最小值.令x-y=u代入x2-4y2=4中,由判別式大于或等于零求出u的最小值,即為所求.
解答: 解:由題意可得
x+2y>0
x-2y>0
(x+2y)(x-2y)=4
,即 x2-4y2=4,即
x2
4
-y2=1,
表示焦點在x軸上的雙曲線,曲線關(guān)于x軸、y軸、原點都是對稱的.
由函數(shù)的圖象的對稱性知,只考慮y≥0的情況即可,因為x>0,所以只須求x-y的最小值.
令x-y=u代入x2-4y2=4中,有3y2-2uy+(4-u2)=0,
∵y∈R,∴△≥0,解得u≥
3

∴當(dāng)x=
4
3
3
,y=
3
3
時,u=
3
,故|x|-|y|的最小值是
3

故選:C.
點評:本小題主要考查函數(shù)與函數(shù)的圖象,函數(shù)的最值,函數(shù)圖象的對稱性的應(yīng)用,求函數(shù)的最值,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<
π
2
)的部分圖象如圖所示,如果x1,x2∈(-
π
6
,
π
3
),且f(x1)=f(x2),則f(x1+x2)=( 。
A、
1
2
B、
2
2
C、1
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個口袋中裝有大小相同的n個紅球(n∈N*且n≥2)和5個白球,一次摸獎從中摸出兩個球,兩個球顏色不同則為中獎.記一次摸獎中獎的概率為p.
(Ⅰ)求p(用n表示);
(Ⅱ)若p=
1
3
,將5個白球全部取出后,對剩下的n個紅球全部作如下標(biāo)記:記上i號的有i個(i=1,2,3,4),其余的紅球記上0號,現(xiàn)從袋中任取兩球,用X表示所取兩球的最大標(biāo)號,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AD⊥AB,BC=
3
BD,AD=1,則
AD
AC
等于( 。
A、2
3
B、
3
C、
3
3
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(m,n)在第一象限,且在直線2x+3y=1上,則
2
m
+
3
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定兩個命題p:函數(shù)y=x2+mx+2在[2,+∞)上為增函數(shù);q:關(guān)于x的方程x2-x+m=0有實數(shù)根.如果p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
2
,且焦點到一條準(zhǔn)線的距離為1,則該雙曲線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xex+ax2-x,(a∈R,e為自然對數(shù)的底數(shù),且e=2.718…).
(Ⅰ)若a=-
1
2
,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若對于x≥0時,恒有f′(x)-f(x)≥(4a+1)x成立,求實數(shù)a的取值范圍;
(Ⅲ)當(dāng)n∈N*時,證明:
e-en+1
1-e
n(n+3)
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的前n項和為Sn,首項為2,若S3+S6=S9,求S15的值.

查看答案和解析>>

同步練習(xí)冊答案