19.已知i是虛數(shù)單位,則復(fù)數(shù)z1=2-i,z2=1+2i,則z1•z2在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接利用復(fù)數(shù)代數(shù)形式的乘法運算化簡,然后求得點的坐標(biāo).

解答 解:∵z1=2-i,z2=1+2i,
∴z1•z2=(2-i)(1+2i)=2+4i-i-2i2=4+3i.
∴z1•z2在復(fù)平面內(nèi)對應(yīng)點的坐標(biāo)是(4,3).
故選:A.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘法運算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.不等式x2(x+1)≤0的解集為{x|x=0或x≤-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若正實數(shù)x,y滿足10x+2y+60=xy,則xy的最小值是180.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)向量$\overrightarrow a$,$\overrightarrow b$滿足|${\overrightarrow a$-$\overrightarrow b}$|=2$\sqrt{3}$,|${\overrightarrow a$+$\overrightarrow b}$|=2,則$\overrightarrow a$•$\overrightarrow b$=( 。
A.$2\sqrt{3}$B.$-2\sqrt{3}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.下列4個命題中:
①$α∈(0,\frac{π}{2})$時,sinα+cosα>1;
②$α∈(\frac{3π}{4},π)$時,sinα<|cosα|;
③$α∈(\frac{5π}{4},\frac{3π}{2})$時,sinα>cosα.
④$α∈(\frac{3π}{2},\frac{7π}{4})$時,sinα+cosα>0.
其中判斷正確的序號是①②(將正確的都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某種細菌在培養(yǎng)過程中,每20分鐘分裂一次(一個分裂為兩個).經(jīng)過2個小時,這種細菌由1個可繁殖成(  )
A.512個B.256個C.128個D.64個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.下列集合表示同一集合的是③(填序號).
①M={(3,2)},N={(2,3)};
②M={(x,y)|x+y=1},N={y|x+y=1};
③M={4,5},N={5,4};
④M={1,2},N={(1,2)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在一個文藝比賽中,12名專業(yè)人士和12名觀眾代表各組成一個評判小組,給參賽選手打分,如圖是兩個評判組對同一選手打分的莖葉圖:

(1)求A組數(shù)的眾數(shù)和B組數(shù)的中位數(shù);
(2)對每一組計算用于衡量相似性的數(shù)值,回答:小組A與小組B哪一個更像是由專業(yè)人士組成的?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知直線l1:2x+3y-5=0,l2:x+2y-3=0的交點是P,直線l3:2x+y-5=0
(1)求過點P與l3平行的直線方程;
(2)求過點P與l3垂直的直線方程.

查看答案和解析>>

同步練習(xí)冊答案