一物體沿直線以速度的單位為:秒,的單位為:米/秒)的速度作變速直線運(yùn)動,求該物體從時刻t=0秒至?xí)r刻 t=5秒間運(yùn)動的路程?

解析試題分析:本題是定積分的實(shí)際應(yīng)用問題,根據(jù)題意,當(dāng)時,;當(dāng)時,,分段積分即可.
∵當(dāng)時,; 當(dāng)時,
∴物體從時刻t=0秒至?xí)r刻 t=5秒間運(yùn)動的路程
=(米)
考點(diǎn):定積分的實(shí)際應(yīng)用

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
證明:(1)存在唯一,使;
(2)存在唯一,使,且對(1)中的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ax2+1,g(x)=x3+bx,其中a>0,b>0.
(1)若曲線y=f(x)與曲線y=g(x) 在它們的交點(diǎn)P(2,c)處有相同的切線(P為切點(diǎn)),求實(shí)數(shù)a,b的值;
(2)令h (x)=f(x)+g(x),若函數(shù)h(x)的單調(diào)減區(qū)間為.
①求函數(shù)h(x)在區(qū)間(-∞,-1]上的最大值M(a);
②若|h(x)|≤3在x∈[-2,0]上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=(ax+1)ex.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a>0時,求函數(shù)f(x)在區(qū)間[-2,0]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),當(dāng)時,有極大值.
(1)求的值;
(2)求函數(shù)的極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

用總長為14.8米的鋼條制成一個長方體容器的框架,如果所制的容器的底面的長比寬多0.5米,那么高為多少時容器的容器最大?并求出它的最大容積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ax-ln x,g(x)=,它們的定義域都是(0,e],其中e是自然對數(shù)的底e≈2.7,a∈R.
(1)當(dāng)a=1時,求函數(shù)f(x)的最小值;
(2)當(dāng)a=1時,求證:f(m)>g(n)+對一切m,n∈(0,e]恒成立;
(3)是否存在實(shí)數(shù)a,使得f(x)的最小值是3?如果存在,求出a的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=(x-a)(x-b)2,a,b是常數(shù).
(1)若a≠b,求證:函數(shù)f(x)存在極大值和極小值;
(2)設(shè)(1)中f(x)取得極大值、極小值時自變量的值分別為x1,x2,設(shè)點(diǎn)A(x1,f(x1)),B(x2,f(x2)).如果直線AB的斜率為-,求函數(shù)f(x)和f′(x)的公共遞減區(qū)間的長度;
(3)若f(x)≥mxf′(x)對于一切x∈R恒成立,求實(shí)數(shù)m,a,b滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時,若對于任意的,都有成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案