【題目】拋物線的焦點(diǎn)為,是拋物線上關(guān)于軸對稱的兩點(diǎn),點(diǎn)是拋物線準(zhǔn)線軸的交點(diǎn),是面積為的直角三角形.

1)求拋物線的方程;

2)點(diǎn)在拋物線上,是直線上不同的兩點(diǎn),且線段的中點(diǎn)都在拋物線上,試用表示.

【答案】(1);(2)).

【解析】

1)設(shè)出直線的方程,于拋物線聯(lián)立,求出的坐標(biāo),利用的面積為列方程求出的值,進(jìn)而可得拋物線的方程;

2)利用是直線上不同的兩點(diǎn),設(shè),表示出的中點(diǎn)坐標(biāo),代入拋物線方程,可得以為根的方程,根據(jù)判別式和韋達(dá)定理用表示出.

解:(1)不妨設(shè)點(diǎn)位于第一象限,

則直線的方程為

聯(lián)立方程,解得

所以.

,解得

故拋物線的方程為

2)設(shè)

的中點(diǎn)坐標(biāo)為

代入得:

同理可得:

是方程的兩個(gè)根

解得.

由韋達(dá)定理可得:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)已知數(shù)列的通項(xiàng)公式:,試求最大項(xiàng)的值;

2)記,且滿足(1),若成等比數(shù)列,求p的值;

3)如果,,,且p是滿足(2)的正常數(shù),試證:對于任意自然數(shù)n,或者都滿足,或者都滿足

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)有一塊三角形空地,如圖ABC,其中AC=180米,BC=90米,∠C=90°,開發(fā)商計(jì)劃在這片空地上進(jìn)行綠化和修建運(yùn)動(dòng)場所,在ABC內(nèi)的P點(diǎn)處有一服務(wù)站(其大小可忽略不計(jì)),開發(fā)商打算在AC邊上選一點(diǎn)D,然后過點(diǎn)P和點(diǎn)D畫一分界線與邊AB相交于點(diǎn)E,在ADE區(qū)域內(nèi)綠化,在四邊形BCDE區(qū)域內(nèi)修建運(yùn)動(dòng)場所. 現(xiàn)已知點(diǎn)P處的服務(wù)站與AC距離為10米,與BC距離為100. 設(shè)米,試問取何值時(shí),運(yùn)動(dòng)場所面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)P的極坐標(biāo)為,直線l的極坐標(biāo)方程為.

(1)求直線l的直角坐標(biāo)方程與曲線C的普通方程;

(2)Q是曲線C上的動(dòng)點(diǎn),M為線段PQ的中點(diǎn),直線l上有兩點(diǎn)AB,始終滿足|AB|4,求MAB面積的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的最大值為,最小值為,則( )

A.存在實(shí)數(shù),使

B.存在實(shí)數(shù),使

C.對任意實(shí)數(shù),有

D.對任意實(shí)數(shù),有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】知函數(shù)

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)設(shè)函數(shù),若的唯一極值點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為,經(jīng)過軸正半軸上點(diǎn)的直線于不同的兩點(diǎn).

1)若,求點(diǎn)的坐標(biāo);

2)若,求證:原點(diǎn)總在以線段為直徑的圓的內(nèi)部;

3)若,且直線有且只有一個(gè)公共點(diǎn),問:△的面積是否存在最小值?若存在,求出最小值,并求出點(diǎn)的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的三個(gè)內(nèi)角AB,C所對的邊分別是ab,c,向量(cos B,cos C),(2ac,b),且

(1)求角B的大小;

(2)b,求ac的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行購物抽獎(jiǎng)促銷活動(dòng),規(guī)定每位顧客從裝有0、1、2、3的四個(gè)相同小球的抽獎(jiǎng)箱中,每次取出一球記下編號后放回(連續(xù)取兩次),若取出的兩個(gè)小球的編號相加之和等于6,則中一等獎(jiǎng),等于5中二等獎(jiǎng),等于43中三等獎(jiǎng),則顧客抽獎(jiǎng)中三等獎(jiǎng)的概率為____________

查看答案和解析>>

同步練習(xí)冊答案