【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)P的極坐標(biāo)為,直線l的極坐標(biāo)方程為.

(1)求直線l的直角坐標(biāo)方程與曲線C的普通方程;

(2)Q是曲線C上的動(dòng)點(diǎn),M為線段PQ的中點(diǎn),直線l上有兩點(diǎn)A,B,始終滿足|AB|4,求MAB面積的最大值與最小值.

【答案】1,;(2)最大值為,最小值為.

【解析】

1)由,,可將直線的方程轉(zhuǎn)化為直角坐標(biāo)方程,由曲線的參數(shù)方程消去參數(shù),可得其普通方程;

2)設(shè),由條件可得,再由到直線的距離求出最值即可.

解:(1直線的極坐標(biāo)方程為,即

,可得直線的直角坐標(biāo)方程為,

將曲線的參數(shù)方程,消去參數(shù),

得曲線的普通方程為;

2)設(shè),,

點(diǎn)的極坐標(biāo)化為直角坐標(biāo)為,

,

點(diǎn)到直線的距離,其中

所以

面積的最大值為,最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)證明:;

2)設(shè),上的極值點(diǎn)從小到大排列為,求證:時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地有兩個(gè)國家AAAA級景區(qū)—甲景區(qū)和乙景區(qū).相關(guān)部門統(tǒng)計(jì)了這兩個(gè)景區(qū)20191月至6月的客流量(單位:百人),得到如圖所示的莖葉圖.關(guān)于20191月至6月這兩個(gè)景區(qū)的客流量,下列結(jié)論正確的是( )

A.甲景區(qū)客流量的中位數(shù)為13000

B.乙景區(qū)客流量的中位數(shù)為13000

C.甲景區(qū)客流量的平均值比乙景區(qū)客流量的平均值小

D.甲景區(qū)客流量的極差比乙景區(qū)客流量的極差大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)在其定義域上既是奇函數(shù),又是增函數(shù)的是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定函數(shù)、,定義.

1)證明:;

2)若,,證明:是周期函數(shù);

3)若,,,,證明:是周期函數(shù)的充要條件是為有理數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù).

1)根據(jù)不同取值,討論函數(shù)的奇偶性;

2)若,對于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

3)若已知,. 設(shè)函數(shù),存在,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點(diǎn)為,是拋物線上關(guān)于軸對稱的兩點(diǎn),點(diǎn)是拋物線準(zhǔn)線軸的交點(diǎn),是面積為的直角三角形.

1)求拋物線的方程;

2)點(diǎn)在拋物線上,是直線上不同的兩點(diǎn),且線段的中點(diǎn)都在拋物線上,試用表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

)當(dāng)時(shí),判斷的奇偶性,并說明理由;

)當(dāng)時(shí),,的值;

)若,且對任何不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的極坐標(biāo)方程和的直角坐標(biāo)方程;

2)設(shè)是曲線上一點(diǎn),此時(shí)參數(shù),將射線繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)交曲線于點(diǎn),記曲線的上頂點(diǎn)為點(diǎn),求的面積.

查看答案和解析>>

同步練習(xí)冊答案