若z∈C,且滿足
(Rez)2+(Imz)2
-z=1+2i,求復數(shù)z.
考點:復數(shù)代數(shù)形式的混合運算,復數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復數(shù)
分析:設z=a+bi,(a,b∈R).由
(Rez)2+(Imz)2
-z=1+2i,可得
a2+b2
-(a+bi)
=1+2i,利用復數(shù)相等即可得出.
解答: 解:設z=a+bi,(a,b∈R).
(Rez)2+(Imz)2
-z=1+2i,
a2+b2
-(a+bi)
=1+2i,
a2+b2
-a=1,-b=2,
解得b=-2,a=
3
2

z=
3
2
-2i
點評:本題考查了復數(shù)的運算法則、復數(shù)相等的定義,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

為了調查學生星期天晚上學習時間利用問題,某校從高二年級100名學生(其中走讀生450名,住宿生550名)中,采用分層抽樣的方法抽取n名學生進行問卷調查,根據(jù)問卷取得了這n名同學每天晚上學習時間(單位:分鐘)的數(shù)據(jù),按照以下區(qū)間分為八組
①[0,30),②[30,60)③[60,90)④[90,120)⑤[120,150)⑥[150,180)⑦[180,210)⑧[210,240),得到頻率布直方圖如圖,已知抽取的學生中星期天晚上學習時間少于60分鐘的人數(shù)為5人.
(1)求n的值并補全下列頻率分布直方圖;
(2)如果把“學生晚上學習時間達到兩小時”作為是否充分利用時間的標準,對抽取的n名學生,完成下列2×2列聯(lián)表:
利用時間充分利用時間不充分合計
走讀生
 
 
 
住校生
 
10
 
合計
 
 
 
據(jù)此資料,你是否認為學生“利用時間是否充分”與走讀、住校有關?
(3)若在第①組、第②組共抽出2人調查影響有效利用時間的原因,求抽出的2人中第①組第②組各有1人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的外接圓半徑為1,且A+C=2B,若角A,B,C所對的邊長分別為a,b,c.
(1)求a2+c2的取值范圍;
(2)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足a2=3,an-1=17(n≥2),Sn=100,則n的值為( 。
A、10B、9C、8D、11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα=2cosα,求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(0,1),B(4,t),是否存在實數(shù)t,滿足A,B兩點作與x軸相切的圓有且只有一個?若存在滿足條件的圓,求出這個圓的方程;若不存在滿足條件的圓,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=|x-1+a|+|x-a|
(1)若a≥2,x∈R,證明:f(x)≥3;
(2)若f(1)<2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x
3x+1
,數(shù)列{an}滿足a1=1,an+1=f(an)(n∈N*).
(1)求證:數(shù)列{
1
an
}是等差數(shù)列;
(2)記Sn=a1a2+a2a3+…+anan+1,求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=4x與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)有相同的焦點F,點A,B是兩曲線的交點,若(
OA
+
OB
)•
AF
=0,則雙曲線的離心率為( 。
A、
2
+2
B、
5
+1
C、
3
+1
D、
2
+1

查看答案和解析>>

同步練習冊答案