【題目】設(shè)函數(shù)f(x)=x3+bx2+cx(xR),已知g(x)=f(x)﹣f′(x)是奇函數(shù)

(1)求b、c的值.

(2)求g(x)的單調(diào)區(qū)間與極值.

【答案】(1)(2)見解析

【解析】

(1)根據(jù)g(x)=f(x)﹣f'(x)是奇函數(shù),且f'(x)=3x2+2bx+c能夠求出bc的值;

(2)對g(x)進(jìn)行求導(dǎo),g'(x)0時的x的取值區(qū)間為單調(diào)遞增區(qū)間,g'(x)0時的x的取值區(qū)間為單調(diào)遞減區(qū)間.g'(x)=0時的x函數(shù)g(x)取到極值.

(1)f(x)=x3+bx2+cx,f'(x)=3x2+2bx+c.

從而g(x)=f(x)﹣f'(x)=x3+bx2+cx﹣(3x2+2bx+c)=x3+(b﹣3)x2+(c﹣2b)x﹣c

是一個奇函數(shù),所以g(0)=0c=0,由奇函數(shù)定義得b=3;

(2)由(Ⅰ)知g(x)=x3﹣6x,從而g'(x)=3x2﹣6,

當(dāng)g'(x)0時,xx,

當(dāng)g'(x)0時,﹣x,

由此可知,g(x)的單調(diào)遞增區(qū)間為(﹣),(+∞);單調(diào)遞減區(qū)間為(﹣,);

g(x)在x=﹣時取得極大值,極大值為4

g(x)在x=時取得極小值,極小值為4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABCD的底面是平行四邊形,PDAB,OAD的中點(diǎn),BOCO.

(1)求證:AB⊥平面PAD;

(2)若AD2AB=4, PAPD,點(diǎn)M在側(cè)棱PD上,且PD3MD,二面角PBCD的大小為,求直線BP與平面MAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計如下表:

為了研究計算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理,得到下表:

(1)根據(jù)表中數(shù)據(jù),求關(guān)于的線性回歸方程;

(2)若近幾年該農(nóng)產(chǎn)品每萬噸的價格 (萬元)與年產(chǎn)量(萬噸)滿足,且每年該農(nóng)產(chǎn)品都能售完,當(dāng)年產(chǎn)量為何值時,銷售額最大?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高一學(xué)年結(jié)束后,要對某班的50名學(xué)生進(jìn)行文理分班,為了解數(shù)學(xué)對學(xué)生選擇文理科是否有影響,有人對該班的分科情況做了如下的數(shù)據(jù)統(tǒng)計:

理科人數(shù)

文科人數(shù)

總計

數(shù)學(xué)成績好的人數(shù)

25

30

數(shù)學(xué)成績差的人數(shù)

10

合計

15

(Ⅰ)根據(jù)數(shù)據(jù)關(guān)系,完成列聯(lián)表;

(Ⅱ)通過計算判斷能否在犯錯誤的概率不超過的前提下認(rèn)為數(shù)學(xué)對學(xué)生選擇文理科有影響.

附:

0.05

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題為真命題的是(

A.設(shè)命題:,.:,;

B.,,;

C.是定義在上的減函數(shù),的充要條件;

D.,,()是全不為0的實(shí)數(shù),不等式解集相等的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長為4,動點(diǎn)E,F在棱上,動點(diǎn)P,Q分別在棱AD,CD上。若,,大于零),則四面體PEFQ的體積

A.都有關(guān)B.m有關(guān),與無關(guān)

C.p有關(guān),與無關(guān)D.π有關(guān),與無關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在實(shí)數(shù)集上的函數(shù),恒不為0,若存在不等于1的正常數(shù),對于任意實(shí)數(shù),等式恒成立,則稱函數(shù)函數(shù).

1)若函數(shù)函數(shù),求出的值;

2)設(shè),其中為自然對數(shù)的底數(shù),函數(shù).

①比較的大小;

②判斷函數(shù)是否為函數(shù),若是,請證明;若不是,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD的底面ABCD為矩形,且PA=AD=1,AB=2,∠PAB=120°,∠PBC=90°.

(I)平面PAD與平面PAB是否垂直?并說明理由;

(II)求平面PCD與平面ABCD所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在(0,+∞)上的函數(shù)fx)滿足下列條件:①fx)不恒為0;②對任意的正實(shí)數(shù)x和任意的實(shí)數(shù)y都有fxy)=yfx).

1)求證:方程fx)=0有且僅有一個實(shí)數(shù)根;

2)設(shè)a為大于1的常數(shù),且fa)>0,試判斷fx)的單調(diào)性,并予以證明;

3)若abc1,且,求證:fafc)<[fb)]2

查看答案和解析>>

同步練習(xí)冊答案