已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足:a3·a4=117,a2+a5=22.
(1)求數(shù)列{an}的通項(xiàng)公式an.
(2)若數(shù)列{bn}是等差數(shù)列,且bn=,求非零常數(shù)c.
(1) n= 4n-3          (2)c=-
(1)由
解得
∵公差d>0,∴a3=9,a4=13,∴d=4.
∴an=a3+(n-3)d=9+(n-3)·4=4n-3.
(2)Sn===2n2-n.
bn==.
∵{bn}是等差數(shù)列,
∴b1+b3=2b2.
+=2·,
∴2c2+c=0.
∵c≠0,∴c=-,經(jīng)檢驗(yàn)c=-符合題意.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)滿足2f(x)-f()=4x-+1,數(shù)列{an}和{bn}滿足下列條件:a1=1,an+1-2an=f(n),bn=an+1-an(n∈N*).
(1)求f(x)的解析式.
(2)求{bn}的通項(xiàng)公式bn.
(3)試比較2an與bn的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

等差數(shù)列{an}中,a7=4,a19=2a9.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=,求數(shù)列{bn}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,互不相同的點(diǎn)A1,A2,…,An,…和B1,B2,…,Bn,…分別在角O的兩條邊上,所有AnBn相互平行,且所有梯形AnBnBn+1An+1的面積均相等,設(shè)OAnan.若a1=1,a2=2,則數(shù)列{an}的通項(xiàng)公式是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若數(shù)列{an}滿足:存在正整數(shù)T,對于任意正整數(shù)n都有anTan成立,則稱數(shù)列{an}為周期數(shù)列,周期為T.已知數(shù)列{an}滿足a1m(m>0),an+1則下列結(jié)論中錯誤的是(  )
A.若m,則a5=3
B.若a3=2,則m可以取3個不同的值
C.若m,則數(shù)列{an}是周期為3的數(shù)列
D.?m∈Q且m≥2,使得數(shù)列{an}是周期數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列{an}為等差數(shù)列,公差為d,若<-1,且它的前n項(xiàng)和Sn有最大值,則使得Sn<0的n的最小值為(  )
A.11B.19C.20D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知各項(xiàng)都不相等的等差數(shù)列{an}的前6項(xiàng)和為60,且a6為a1和a21的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)若數(shù)列{bn}滿足bn+1-bn=an(n∈N*),且b1=3,求數(shù)列{}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列{an}是公差不為0的等差數(shù)列,且a1,a3,a7為等比數(shù)列{bn}的連續(xù)三項(xiàng),則數(shù)列{bn}的公比為(  )
A.B.4C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列{an}滿足anan+1an+2·an+3=24,且a1=1,a2=2,a3=3,則a1+a2+a3+…+a2 013=________.

查看答案和解析>>

同步練習(xí)冊答案