13.如圖,在三棱臺ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(Ⅰ)求證:BF⊥平面ACFD;
(Ⅱ)求直線BD與平面ACFD所成角的余弦值.

分析 (Ⅰ)根據(jù)三棱臺的定義,可知分別延長AD,BE,CF,會交于一點(diǎn),并設(shè)該點(diǎn)為K,并且可以由平面BCFE⊥平面ABC及∠ACB=90°可以得出AC⊥平面BCK,進(jìn)而得出BF⊥AC.而根據(jù)條件可以判斷出點(diǎn)E,F(xiàn)分別為邊BK,CK的中點(diǎn),從而得出△BCK為等邊三角形,進(jìn)而得出BF⊥CK,從而根據(jù)線面垂直的判定定理即可得出BF⊥平面ACFD;
(Ⅱ)由BF⊥平面ACFD便可得出∠BDF為直線BD和平面ACFD所成的角,根據(jù)條件可以求出BF=$\sqrt{3}$,DF=$\frac{3}{2}$,從而在Rt△BDF中可以求出BD的值,從而得出cos∠BDF的值,即得出直線BD和平面ACFD所成角的余弦值.

解答 解:(Ⅰ)證明:延長AD,BE,CF相交于一點(diǎn)K,如圖所示:∵平面BCFE⊥平面ABC,且AC⊥BC;
∴AC⊥平面BCK,BF?平面BCK;
∴BF⊥AC;
又EF∥BC,BE=EF=FC=1,BC=2;
∴△BCK為等邊三角形,且F為CK的中點(diǎn);
∴BF⊥CK,且AC∩CK=C;
∴BF⊥平面ACFD;
(Ⅱ)∵BF⊥平面ACFD;
∴∠BDF是直線BD和平面ACFD所成的角;
∵F為CK中點(diǎn),且DF∥AC;
∴DF為△ACK的中位線,且AC=3;
∴$DF=\frac{3}{2}$;
又$BF=\sqrt{3}$;
∴在Rt△BFD中,$BD=\sqrt{3+\frac{9}{4}}=\frac{\sqrt{21}}{2}$,cos$∠BDF=\frac{DF}{BD}=\frac{\frac{3}{2}}{\frac{\sqrt{21}}{2}}=\frac{\sqrt{21}}{7}$;
即直線BD和平面ACFD所成角的余弦值為$\frac{\sqrt{21}}{7}$

點(diǎn)評 考查三角形中位線的性質(zhì),等邊三角形的中線也是高線,面面垂直的性質(zhì)定理,以及線面垂直的判定定理,線面角的定義及求法,直角三角形邊的關(guān)系,三角函數(shù)的定義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若集合A={x|3x<1},B={x|0≤x≤1},則(∁RA)∩B=(  )
A.(0,1)B.[0,1)C.(0,1]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的點(diǎn)P和線段AC上的點(diǎn)D,滿足PD=DA,PB=BA,則四面體PBCD的體積的最大值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,0),B(0,1),C($\frac{3}{2}$,0),過原點(diǎn)的直線l將△ABC分成面積相等的兩部分,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)函數(shù)f(x)=x3+3x2+1,已知a≠0,且f(x)-f(a)=(x-b)(x-a)2,x∈R,則實(shí)數(shù)a=-2,b=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知θ為鈍角,且cos($\frac{π}{4}$-θ)cos($\frac{π}{4}$+θ)=$\frac{1}{8}$.求tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,己知點(diǎn)A(2,1),B(2,-8),且它的內(nèi)切圓的方程為x2+y2=4.求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.對于函數(shù)f(x)=$\frac{1}{2}$(sinx+cosx)+$\frac{1}{2}$|sinx-cosx|,給出下列四個(gè)命題:
①該函數(shù)是以π為最小正周期的周期函數(shù);
②該函數(shù)的值域?yàn)閇-1,$\frac{\sqrt{2}}{2}$];
③該函數(shù)的單調(diào)遞增區(qū)間為[2kπ+$\frac{π}{4}$,2kπ+$\frac{π}{2}$],[2kπ+$\frac{5π}{4}$,2kπ+2π];
④該函數(shù)關(guān)于直線x=$\frac{π}{4}$+kπ,k∈Z對稱,
其中正確命題的序號為( 。
A.①③B.②③④C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在區(qū)間[0,10]內(nèi)隨機(jī)取出兩個(gè)數(shù),則這兩個(gè)數(shù)的平方和在區(qū)間[0,10]內(nèi)的概率為(  )
A.$\frac{π}{40}$B.$\frac{{\sqrt{10}}}{10}$C.$\frac{1}{10}$D.$\frac{π}{4}$

查看答案和解析>>

同步練習(xí)冊答案