3.若集合A={x|3x<1},B={x|0≤x≤1},則(∁RA)∩B=(  )
A.(0,1)B.[0,1)C.(0,1]D.[0,1]

分析 根據(jù)指數(shù)函數(shù)的單調(diào)性即可得出A=(-∞,0),并且B=[0,1],從而進(jìn)行補(bǔ)集和交集的運(yùn)算便可求出(∁RA)∩B.

解答 解:解3x<1得,x<0;
∴A=(-∞,0),且B=[0,1];
∴∁RA=[0,+∞);
∴(∁RA)∩B=[0,1].
故選D.

點(diǎn)評 考查描述法和區(qū)間表示集合的方法,以及補(bǔ)集、交集的概念及運(yùn)算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.化簡:$\frac{1-tan9°}{sin9°(1-2si{n}^{2}9°)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知α,β∈(-$\frac{π}{4}$,0),且3sinβ=sin(2α+β),4$\sqrt{3}$tan$\frac{α}{2}$=tan2$\frac{α}{2}$-1,求α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若$\frac{1}{a}$<$\frac{1}$<0,則下列不等式:①a+b<ab;②|a|>|b|;③$\frac{a}$+$\frac{a}$>2;④b>a.以正確的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如果拋物線y2=8x上的點(diǎn)M到y(tǒng)軸的距離是3,那么點(diǎn)M到該拋物線焦點(diǎn)F的距離是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.定義在(0,+∞)上的函數(shù)f(x)=a(x+$\frac{1}{x}$)-|x-$\frac{1}{x}}$|(a∈R).
(Ⅰ)當(dāng)a=$\frac{1}{2}$時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≥$\frac{1}{2}$x對任意的x>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)集合A={x||x-2|<1},B={x|x>a},若A∩B=A,則實(shí)數(shù)a的取值范圍是(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在銳角△ABC中,a,b,c分別為角A,B,C所對的邊,且$\sqrt{3}$a=2csinA,c=$\sqrt{7}$,且△ABC的面積為$\frac{3\sqrt{3}}{2}$,則a+b=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在三棱臺ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(Ⅰ)求證:BF⊥平面ACFD;
(Ⅱ)求直線BD與平面ACFD所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案