精英家教網 > 高中數學 > 題目詳情
8.復數z=-1+2i,則z在復平面內對應的點所在象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接由復數z求出在復平面內對應的點的坐標得答案.

解答 解:由復數z=-1+2i,
得z在復平面內對應的點的坐標為:(-1,2),位于第二象限.
故選:B.

點評 本題考查了復數的代數表示法及其幾何意義,是基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

18.已知函數f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的圖象兩相鄰對稱軸之間的距離是$\frac{π}{2}$,若將f(x)的圖象先向右平移$\frac{π}{6}$個單位,再向上平移$\sqrt{3}$個單位,得到的圖象對應的函數g(x)為奇函數.
(1)求f(x)的解析式及單調增區(qū)間;
(2)對任意$x∈[{0,\frac{π}{3}}]$,f2(x)-(2+m)f(x)+2+m≤0恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.不等式|x-1|+|x+2|≥a恒成立,則a的取值范圍為(-∞,3].

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.設橢圓$\frac{x^2}{m}+\frac{y^2}{3}=1$的兩個焦點F1,F2都在x軸上,P是第一象限內該橢圓上的一點,且$\frac{{sin∠P{F_1}{F_2}+sin∠P{F_2}{F_1}}}{{sin∠{F_1}P{F_2}}}=2$,則正數m的值為4.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.某校從參加考試的學生中抽出60名學生,將其成績(均為整數)分成六組[40,50),[50,60)…[90,100]后,畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(Ⅰ) 求成績落在[70,80)上的頻率,并補全這個頻率分布直方圖;
(Ⅱ) 估計這次考試的及格率(60分及以上為及格)和平均分;
(Ⅲ) 設學生甲、乙的成績屬于區(qū)間[40,50),現從成績屬于該區(qū)間的學生中任選兩人,求甲、乙中至少有一人被選的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.已知平面向量$\overrightarrow{a}$=(m,n),平面向量$\overrightarrow$=(p,q),(其中m,n,p,q∈Z).
定義:$\overrightarrow{a}$?$\overrightarrow$=(mp-nq,mq+np).若$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,1),則$\overrightarrow{a}$?$\overrightarrow$=(0,5);
若$\overrightarrow{a}$?$\overrightarrow$=(5,0),且|$\overrightarrow{a}$|<5,|$\overrightarrow$|<5,則$\overrightarrow{a}$=(2,1),$\overrightarrow$=(2,-1)(寫出一組滿足此條件的$\overrightarrow{a}$和$\overrightarrow$即可).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.以平面直角坐標原點為極點,x軸正半軸為極軸,則直角坐標為(-2,2)的點的極坐標為( 。
A.(2$\sqrt{2}$,$\frac{π}{4}$)B.(2$\sqrt{2}$,$\frac{3π}{4}$)C.(2,$\frac{π}{4}$)D.(2,$\frac{3π}{4}$)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.已知函數f(x)=$\frac{lnx+1}{{e}^{x}}$(e是自然對數的底數),h(x)=1-x-xlnx.
(1)求曲線y=f(x)在點A(1,f(1))處的切線方程;
(2)求h(x)的單調區(qū)間;
(3)設g(x)=xf′(x),其中f′(x)為f(x)的導函數,證明:對任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.運行如下程序框圖,分別輸入t=45,t=-$\frac{172}{3}$,則輸出s的和為( 。
A.-2017B.2017C.-2016D.2016

查看答案和解析>>

同步練習冊答案