15.已知p:-4<x-a<4,q:(x-2)(3-x)>0,若¬p是¬q的充分不必要條件,則實(shí)數(shù)a的取值范圍為[-1,6].

分析 求出p,q的等價條件,利用充分條件和必要條件的定義即可得到結(jié)論

解答 解:由-4<x-a<4得到a-4<x<a+4,
由(x-2)(3-x)>0,解得2<x<3,即q:2<x<3,
若¬p是¬q的充分不必要條件,
則q是p的充分不必要條件,
即$\left\{\begin{array}{l}{a-4≤2}\\{a+4≥3}\end{array}\right.$,
解得-1≤a≤6,
故答案為:[-1,6].

點(diǎn)評 本題主要考查充分條件和必要條件的判斷,根據(jù)不等式的性質(zhì)求出不等式的等價條件是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知等比數(shù)列的各項(xiàng)都為正數(shù),且當(dāng)n≥3時,a4a2n-4=102n,則數(shù)列l(wèi)ga1,2lga2,22lga3,23lga4,…,2n-1lgan,…的前n項(xiàng)和Sn等于( 。
A.n•2nB.(n-1)•2n-1-1C.(n-1)•2n+1D.2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,圓O的直徑AB=4,直線CE和圓O相切于點(diǎn)C,AD⊥CE于D,若∠ABC=30°,則AD的長為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=(x+1)e2x,g(x)=aln(x+1)+$\frac{3}{4}$x2+(3-a)x+a(a∈R).
(1)當(dāng)a=9,求函數(shù)y=g(x)的單調(diào)區(qū)間;
(2)若f(x)≥g(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.關(guān)于x的方程ax-x=1(a∈Z)有整數(shù)解,則a=0或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)不等式|x-2|<a(a∈N*)的解集為A,且$\frac{3}{2}$∈A,$\frac{1}{2}$∉A.
①求a的值;
②求函數(shù)f(x)=|x+a|+|x-2|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知角α的終邊過點(diǎn)P(8m,3),且cosα=-$\frac{4}{5}$,則m的值為( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f($\sqrt{x+1}$)的定義域?yàn)閇0,3],則f(x)的定義域?yàn)閇1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)i是虛數(shù)單位,則復(fù)數(shù)(1+i)(1+2i)=( 。
A.3+3iB.3+iC.-1+3iD.-1+i

查看答案和解析>>

同步練習(xí)冊答案