A. | n•2n | B. | (n-1)•2n-1-1 | C. | (n-1)•2n+1 | D. | 2n+1 |
分析 設(shè)等比數(shù)列{an}的公比為q>0,且當(dāng)n≥3時(shí),a4a2n-4=102n,可得${a}_{4}^{2}{q}^{2n-8}$=102n,化為${a}_{4}{q}^{n-4}$=10n=an,于是lgan=n.利用“錯(cuò)位相減法”、等比數(shù)列的求和公式即可得出.
解答 解:設(shè)等比數(shù)列{an}的公比為q>0,且當(dāng)n≥3時(shí),a4a2n-4=102n,∴${a}_{4}^{2}{q}^{2n-8}$=102n,化為${a}_{4}{q}^{n-4}$=10n=an,
∴l(xiāng)gan=n.
∴數(shù)列l(wèi)ga1,2lga2,22lga3,23lga4,…,2n-1lgan,…的前n項(xiàng)和Sn=1+2×2+22×3+…+n•2n-1,
2Sn=2+2×22+…+(n-1)•2n-1+n•2n,
∴-Sn=1+2+22+…+2n-1-n•2n=$\frac{{2}^{n}-1}{2-1}$-n•2n=(1-n)•2n-1,
∴Sn=(n-1)•2n+1.
故選:C.
點(diǎn)評(píng) 本題考查了“錯(cuò)位相減法”、等比數(shù)列的求和公式、遞推關(guān)系、對(duì)數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,+∞) | B. | (-∞,-3] | C. | [-3,1] | D. | (-∞,-3]∪[1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x${\;}^{\frac{1}{2}}}$ | B. | y=log3x | C. | y=cosx | D. | y=|x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com