【題目】到2020年,我國將全面建立起新的高考制度,新高考采用模式,其中語文、數(shù)學(xué)、英語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣、愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門科目中自選3門(6選3)參加考試,滿分各100分.為了順利迎接新高考改革,某學(xué)校采用分層抽樣的方法從高一年級1000名(其中男生550名,女生450名)學(xué)生中抽取了名學(xué)生進行調(diào)查.

(1)已知抽取的名學(xué)生中有女生45名,求的值及抽取的男生的人數(shù).

(2)該校計劃在高一上學(xué)期開設(shè)選修中的“物理”和“地理”兩個科目,為了解學(xué)生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學(xué)生進行問卷調(diào)查(假定每名學(xué)生在這兩個科目中必須選擇一個科目,且只能選擇一個科目),得到如下列聯(lián)表.

選擇“物理”

選擇“地理”

總計

男生

10

女生

25

總計

(i)請將列聯(lián)表補充完整,并判斷是否有以上的把握認為選擇科目與性別有關(guān)系.

(ii)在抽取的選擇“地理”的學(xué)生中按性別分層抽樣抽取6名,再從這6名學(xué)生中抽取2名,求這2名中至少有1名男生的概率.

附:,其中.

0.05

0.01

3.841

6.635

【答案】(1) ,55人 (2) (i)見解析;(ii)

【解析】

1)根據(jù)題意可得,求解即可得出的值,進而可得抽取的男生人數(shù);

(2)(i)根據(jù)題中數(shù)據(jù)先完善列聯(lián)表,再由求出的值,結(jié)合臨界值表即可的結(jié)果;

(ii)先由題易知抽取的選擇“地理”的6名學(xué)生中,有2名男生,分別記為,,4名女生,分別記為,,;用列舉法分別列舉出“6名學(xué)生中隨機抽取2名”和“其中至少有1名男生”所包含的基本事件,基本事件個數(shù)比即是所求概率.

解:(1)由題意得,解得,

則抽取的男生的人數(shù)為.

(2)(i)

選擇“物理”

選擇“地理”

總計

男生

45

10

55

女生

25

20

45

總計

70

30

100

,

所以有以上的把握認為送擇科目與性別有關(guān)系.

(ii)由題易知抽取的選擇“地理”的6名學(xué)生中,有2名男生,分別記為,,4名女生,分別記為,,.

從6名學(xué)生中隨機抽取2名,有,,,,,,,,,,,共15種情況,其中至少有1名男生的有,,,,,,共9種情況,

故所求概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)討論的單調(diào)性;

(2)當時,證明:;

(3)求證:對任意的,都有:,(其中為自然對數(shù)的底數(shù))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知橢圓的離心率為,且過點. 為橢圓的右焦點, 為橢圓上關(guān)于原點對稱的兩點,連接分別交橢圓于兩點.

⑴求橢圓的標準方程;

⑵若,求的值;

⑶設(shè)直線, 的斜率分別為 ,是否存在實數(shù),使得,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個圓錐底面半徑為,高為,

1)求圓錐的表面積.

2)求圓錐的內(nèi)接正四棱柱表面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖4①,②,③,④為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形.

(1)求出f(5)的值;

(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達式;

(3)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓心在原點的兩圓半徑分別為,點是大圓上一動點,過點作軸的垂線,垂足為 與小圓交于點,過的垂線,垂足為,設(shè)點坐標為.

(1)求的軌跡方程;

(2) 已知直線 是常數(shù),且, , 是軌跡上的兩點,且在直線的兩側(cè),滿足兩點到直線的距離相等.平面內(nèi)是否存在定點,使得恒成立?若存在,求出定點坐標;若不可能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國家收購某種農(nóng)產(chǎn)品的價格為120/t,其中征稅標準為每100元征收8元(稱稅率為8個百分點),計劃可收購at,為減輕農(nóng)民負擔,決定降低稅率x個百分點,預(yù)計收購量可增加2x個百分點.

1)寫出降低稅率后,稅收y(萬元)與x的關(guān)系式;

2)要使此項稅收在稅率調(diào)整后不低于原計劃的78%,試確定x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如下表:

年份

2014

2015

2016

2017

2018

時間代號t

1

2

3

4

5

儲蓄存款y(千億元)

5

6

7

8

10

(1)求y關(guān)于t的線性回歸方程;

(2)用所求線性回歸方程預(yù)測該地區(qū)2019年(t=6)的人民幣儲蓄存款.

(回歸方程中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式

11

2349

3456725

4567891049

照此規(guī)律,第n個等式為__________________________

查看答案和解析>>

同步練習(xí)冊答案